Ohmic heating is one of advanced thermal processing techniques which utilize conversion of electrical energy into heat. In our study, a feasibility of ohmic heating was tested to cook instant rice cake to improve energy efficacy as an alternative heating methods of conventional electrical kettle. Ohmic heating was conducted using customized ohmic cell (7.5×4.5×9.5 cm) equipped with titanium electrodes. Instant rice cakes in soup were ohmically heated up to 100°C at different electric fields (9, 12, 15 & 18 V/cm) and temperature holding times (60, 80, 100 & 120 s). Thermocouple was placed into both soup and rice cake to evaluate the temperature profile and energy efficacy. Temperature, voltage and current across the sample were measured and recorded at every 3 s using data acquisition system (DAQ). Mathematical model was developed to calculate the internal energy generation rate (QR, W). Internal energy generation rate (QR, W) was integrated versus temperature come-up time (s) to compute the total internal energy dose (ET, J) using MATLBA software. For energy efficacy (Eff), it was calculated ratio of total internal energy dose (ET, J) to heat quantity (Qh, J). During ohmic heating, temperature come-up time was significantly reduced as a function of elevated electric field (P<0.05). For example, 9V/cm of electric field showed 6.2±0.4 min of temperature come-up time up to 100°C. Higher electric field at 18 V/cm reduced temperature come-up time to 1.9±0.1 min. The electric field of 15 V/cm showed the best energy efficacy as 0.78 which meant 78% of electrical energy was converted into thermal energy for heating. In the texture profile analysis, the most preferable harness was found as 6.191 N at 15 V/cm and 100 s holding time. Our study showed the potential of ohmic heating to cook instant rice cakes for home meal replacement (HMR) and outdoor foods.