The embryonic genome activation (EGA) is genetically activated states that embryos make the materials such as growth factors for using themselves. EGA is various because they have many materials, different site, different stage, also different species. At this time, transcription factors are expressed. Transcription factors bind to specific DNA region, and regulate the gene expression. Thus, we check the expression of transcription factors, we can know that embryo development is very well or not. The development stages of embryos are basically the stages from fertilization to blastocyst. So, we check the embryos oocyte to blastocyst. In our experiments, we focus the early developmental transcription factors such as Cdx2, Oct4, Sox2, Nanog and E-Cadherin. Above antibody factors showed different expression sites, and there were many differentiated parts from other animal species. In addition, we compared the SCNT and parthenogenetic activation (PA) because these are same methods using electrical activation among the embryo production methods. Our results showed not only similar patterns but also different patterns between pig and mouse. Therefore, we have to investigate that different patterns of transcription factors play a role in pigs, and why occur.
In porcine production, porcine litter size is a quantitative trait and its heritability is especially low. So it is necessary to identify porcine reproductive gene and protein. The establishment of pregnancy requires performance of a receptive endometrium and ovary. The endometrium and ovary go through transformations in response to physiological changes initiated by local factors including ovarian hormones and uterine environment that make it for possible pregnancy. The endometrium and ovary secrete a wide array of growth factors, cytokines and proteins. Based on these background, we analyzed the endometrial tissue protein of porcine and would find out biomarker proteins related to porcine litter size.
We sorted the two groups according to litter size of porcine: a small litter size group (SLSG) (n=2) and a large litter size group (LLSG) (n=2). The porcine endometrial tissue and ovary samples were preprocessed for proteomic analysis. In order to comparison, samples of each 2mg endometrium protein and ovary protein were separated form pI and molecular weight in the same conditions by applying a pH 3.0-10.0 IPG gels for the first dimension and then 8-16% SDS-PAGE gel for the second dimension. After proteins were visualized by staining with Commassie brilliant blue (CBB), image analysis was performed with Image Master detect variations in protein spots between large litter size group and small litter size group endometrium. And then differential proteins were identified using MALDI-TOF analysis.
The master images of 2-DE gel images obtained from 2mg samples of large litter size group and small litter size group endometrial proteins at pH 3.0-10.0 revealed more than 400 protein spots in pH 3.0-10.0 range. When we analyzed the levels of expression of proteins that protein spots appeared more than 1.5-fold difference in endometrial tissue from porcine.
In comparison of SLSG(small litter size group) with LLSG(large litter size group), a total of 18 protein spots differentially expressed on porcine endometrial tissue 2-DE gels, among which 9 spots were up-regulated proteins as retinol dehydrogenase 16-like isoform 1, Acrosin-binding protein, alpha-N-acetylgalactosaminidase. phosphoglycerate kinase 2, Acrosin-binding protein in LLSG. And 8 spots were up-regulated proteins as phosphoglycerate kinase 2, prenylcysteine oxidase in SLSG.
Until now, problems related to shortage of organ for transplantation have been continuing. Pigs are the most suitable animal for xenotransplantation. Although primates are most similar to humans, they are not suitable because they have low productivity. Pigs are more productive than primates, and their organ size and physiological characteristics are similar to humans, with the exception of primates. In this study, we breeding the transgenic minipigs using natural mating to produce transgenic pigs. And, transgenic pigs has transmission rate that follow mendel’s rule. There are 20% hDAF gene, 20% US11 gene and 50% both hDAF and US11 gene in transgenic offsprings. Furthermore, transgenic pigs followed normal litter size, and piglets also has normal sex ratio. To suppress the immune function, experiments were performed using porcine ear fibroblast that transfected with hDAF and US11gene. In Cytotoxicity experiment against human complement, hDAF gene and double transgenic cell with both hDAF and US11 gene showed effect to reduce cytotoxicity rate in all of human complement condition. US11 gene and double transgenic cell were significantly reduce the cytotoxicity ratio in human NK cell. Besides, hDAF gene transgenic cell also reduce immune response in 10:1 concentration of human NK cell. In conclusion, natural mating was efficient method for breeding transgenic pigs. And, hDAF and US11 genes has effect for reduce cytotoxicity against human NK cell and human complement conditions.
Xenotransplantation is proposed as a solution to the problem of organ shortage. However, transplantation of xenogeneic organs induces an antigen-antibody reaction in α-1,3-gal structure that are not present in humans and primates, and thus complement is also activated and organs die within minutes or hours. In this study, we used FasL gene, which is involved in the immune response of NK cell, and US11, which suppresses MHC Class I cell membrane surface expression, to inhibit cell mediated rejection in the interspecific immunity rejection, and also hDAF(CD55) was introduced to confirm the response to C3 complement. These genes were tranfeced into Korean native pig fetal fibroblasts using pCAGGS vector. And cytotoxicity of NK cell and human complement was confirmed in each cell line. The US11 inhibited the cytotoxicity of NK cell and, in addition, the simultaneous expression of US11 and Fas ligand showed excellent suppress to T-lymphocyte cytotoxicity, hDAF showed weak resistance to cytotoxicity of natural killer cell but not in CD8+ CTLs. Cytotoxicity study with human complement showed that hDAF was effective for reducing complement reaction. In this studies have demonstrated that each gene is effective in reducing immune rejection.