검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        3.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Many transcription factors are involved in directing the growth of porcine oocytes. The localization and expression level of a given transcription factor often differ at each stage of early embryonic growth, which spans from fertilization to the formation of the blastocyst. A hallmark of the blastocyst stage is the separation of the endodermal and mesodermal ectoderm. The embryo's medium and its effects are known to be crucial during early development compared to the other developmental stages, and thus require a lot of caution. Therefore, in many experiments, early development is divided into the quality of oocyte and cumulus cells and used in experiments. We thought that we were also heavily influenced by genetic reasons. Here, we examined the expression patterns of five key transcription factors (CDX2, OCT4, SOX2, NANOG, and E-CADHERIN) during porcine oocyte development whose expression patterns are controversial in the pig to the literature. Antibodies against these transcription factors were used to determine the expression and localization of them during the early development of pig embryos. These results indicate that the expressions of key transcription factors are generally similar in mouse and pig early developing embryos, but NANOG and SOX2 expression appears to show species-specific differences between pig and mouse developing embryos. This work helps us better understand how the expression patterns of transcription factors translate into developmental effects and processes, and how the expression and localization of different transcription factors can crucially impact oocyte growth and downstream developmental processes.
        4,000원
        4.
        2018.11 구독 인증기관·개인회원 무료
        The embryonic genome activation (EGA) is genetically activated states that embryos make the materials such as growth factors for using themselves. EGA is various because they have many materials, different site, different stage, also different species. At this time, transcription factors are expressed. Transcription factors bind to specific DNA region, and regulate the gene expression. Thus, we check the expression of transcription factors, we can know that embryo development is very well or not. The development stages of embryos are basically the stages from fertilization to blastocyst. So, we check the embryos oocyte to blastocyst. In our experiments, we focus the early developmental transcription factors such as Cdx2, Oct4, Sox2, Nanog and E-Cadherin. Above antibody factors showed different expression sites, and there were many differentiated parts from other animal species. In addition, we compared the SCNT and parthenogenetic activation (PA) because these are same methods using electrical activation among the embryo production methods. Our results showed not only similar patterns but also different patterns between pig and mouse. Therefore, we have to investigate that different patterns of transcription factors play a role in pigs, and why occur.
        5.
        2018.11 구독 인증기관·개인회원 무료
        Until now, problems related to shortage of organ for transplantation have been continuing. Pigs are the most suitable animal for xenotransplantation. Although primates are most similar to humans, they are not suitable because they have low productivity. Pigs are more productive than primates, and their organ size and physiological characteristics are similar to humans, with the exception of primates. In this study, we breeding the transgenic minipigs using natural mating to produce transgenic pigs. And, transgenic pigs has transmission rate that follow mendel’s rule. There are 20% hDAF gene, 20% US11 gene and 50% both hDAF and US11 gene in transgenic offsprings. Furthermore, transgenic pigs followed normal litter size, and piglets also has normal sex ratio. To suppress the immune function, experiments were performed using porcine ear fibroblast that transfected with hDAF and US11gene. In Cytotoxicity experiment against human complement, hDAF gene and double transgenic cell with both hDAF and US11 gene showed effect to reduce cytotoxicity rate in all of human complement condition. US11 gene and double transgenic cell were significantly reduce the cytotoxicity ratio in human NK cell. Besides, hDAF gene transgenic cell also reduce immune response in 10:1 concentration of human NK cell. In conclusion, natural mating was efficient method for breeding transgenic pigs. And, hDAF and US11 genes has effect for reduce cytotoxicity against human NK cell and human complement conditions.
        6.
        2017.09 구독 인증기관 무료, 개인회원 유료
        Xenotransplantation is proposed as a solution to the problem of organ shortage. However, transplantation of xenogeneic organs induces an antigen-antibody reaction in α-1,3-gal structure that are not present in humans and primates, and thus complement is also activated and organs die within minutes or hours. In this study, we used FasL gene, which is involved in the immune response of NK cell, and US11, which suppresses MHC Class I cell membrane surface expression, to inhibit cell mediated rejection in the interspecific immunity rejection, and also hDAF(CD55) was introduced to confirm the response to C3 complement. These genes were tranfeced into Korean native pig fetal fibroblasts using pCAGGS vector. And cytotoxicity of NK cell and human complement was confirmed in each cell line. The US11 inhibited the cytotoxicity of NK cell and, in addition, the simultaneous expression of US11 and Fas ligand showed excellent suppress to T-lymphocyte cytotoxicity, hDAF showed weak resistance to cytotoxicity of natural killer cell but not in CD8+ CTLs. Cytotoxicity study with human complement showed that hDAF was effective for reducing complement reaction. In this studies have demonstrated that each gene is effective in reducing immune rejection.
        4,000원
        7.
        2017.05 구독 인증기관·개인회원 무료
        Embryo development is very important in reproductive physiology of domestic animal experiments. Therefore, in the above experiment, we want to provide a lot of important information with regard to fertilization breeding by looking at the expression of transcription factor by early embryo development. It is known that mice affect early embryonic development of many transcription factors, many experiments are underway. Different types of mammals showed different expression patterns, thus, we used pigs, which are known to be the most similar to humans, to observe the expression of transcription factors in early embryonic development. Transcription factors were observed using CDX2, OCT4 and E-CADHERIN. CDX2 was expressed in 2 cells, OCT4 and E-CADHERIN were expressed in blastocyst. OCT4 was expressed specifically in ICM (inner cell mass) in blastocyst, and E-CADHERIN was expressed in cell wall and junction of blastocyst. These results show that CDX2, OCT4 and E-CADHERIN play an important role in early embryonic development in pigs.