This study was conducted to determine the effect of mathematical transformation on near infrared spectroscopy (NIRS) calibrations for the prediction of chemical composition and fermentation parameters in corn silage. Corn silage samples (n=407) were collected from cattle farms and feed companies in Korea between 2014 and 2015. Samples of silage were scanned at 1 nm intervals over the wavelength range of 680~2,500 nm. The optical data were recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with several spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation (R2 cv) and the lowest standard error of cross validation (SECV). Results of this study revealed that the NIRS method could be used to predict chemical constituents accurately (correlation coefficient of cross validation, R2 cv, ranging from 0.77 to 0.91). The best mathematical treatment for moisture and crude protein (CP) was first-order derivatives (1, 16, 16, and 1, 4, 4), whereas the best mathematical treatment for neutral detergent fiber (NDF) and acid detergent fiber (ADF) was 2, 16, 16. The calibration models for fermentation parameters had lower predictive accuracy than chemical constituents. However, pH and lactic acids were predicted with considerable accuracy (R2 cv 0.74 to 0.77). The best mathematical treatment for them was 1, 8, 8 and 2, 16, 16, respectively. Results of this experiment demonstrate that it is possible to use NIRS method to predict the chemical composition and fermentation quality of fresh corn silages as a routine analysis method for feeding value evaluation to give advice to farmers.
This study was conducted to assess the potential of using NIRS to accurately determine the chemical composition and fermentation parameters in fresh coarse sorghum and sudangrass silage. Near Infrared Spectroscopy (NIRS) has been increasingly used as a rapid and accurate method to analyze the quality of cereals and dried animal forage. However, silage analysis by NIRS has a limitation in analyzing dried and ground samples in farm-scale applications because the fermentative products are lost during the drying process. Fresh coarse silage samples were scanned at 1 nm intervals over the wavelength range of 680~2500 nm, and the optical data were obtained as log 1/Reflectance (log 1/R). The spectral data were regressed, using partial least squares (PLS) multivariate analysis in conjunction with first and second order derivatization, with a scatter correction procedure (standard normal variate and detrend (SNV&D)) to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical constituents with a high degree of accuracy (i.e. the correlation coefficient of cross validation (R²cv) ranged from 0.86~0.96), except for crude ash which had an R² cv of 0.68. Comparison of the mathematical treatments for raw spectra showed that the second-order derivatization procedure produced the best result for all the treatments, except for neutral detergent fiber (NDF). The best mathematical treatment for moisture, acid detergent fiber (ADF), crude protein (CP) and pH was 2,16,16 respectively while the best mathematical treatment for crude ash, lactic acid and total acid was 2,8,8 respectively. The calibrations of fermentation products produced poorer calibrations (RPD < 2.5) with acetic and butyric acid. The pH, lactic acid and total acids were predicted with considerable accuracy at R²cv 0.72~0.77. This study indicated that NIRS calibrations based on fresh coarse sorghum and sudangrass silage spectra have the capability of assessing the forage quality control