The aim of study is to contribute to this knowledge-base by investigating the respiratory function, the metabolic rate and the difference of physiological responses un-der low water temperature (20℃→15℃) stress be-tween diploid and triploid far eastern catfish, Silurus asotus. During the 48 hrs of water temperature stress exposure time, the respiratory frequencies, CO₂ and NH₄+ concentrations of diploid had higher values than those of triploid (p<0.05). However, pH of triploid was higher than those of diploid (p<0.05), and oxygen consumption rate was not different between diploid and triploid (p>0.05). The level of plasma cortisol and plasma glucose of triploid was lower than those of the diploid (p<0.05). However, in case of lactic acid, there were not significant between triploid and diploid (p>0.05). These results suggest that diploid was more sensitive for low water temperature stress response than triploid in this species.
The objective of this study was to determine the mitotic intervals (τ0) of two consecutive cell divisions and synchronous embryonic cleavage in grass puffer, Takifugu niphobles at different water temperatures (18, 20, 22, and 24℃). The color of the fertilized egg was light yellowish. The egg type was demersal and unadhesive. Egg weight was 0.09±0.002 mg. The sizes of unfertilized eggs were smaller than fertilized eggs in major axis and minor axis at 20℃ (p<0.05). The size of the fertilized egg of 18℃ water temperature group at the blastodisc stage was the smallest (p<0.05), but no significant differences were observed in the other water temperatures group except 18℃ water temperature group (p>0.05). The first cleavage stages at 18, 20, 22, and 24℃ were at 75, 90, 105, and 120 mins, respectively. As water temperature was increased, embryonic development and formation time of the first cleavage furrow were accelerated. There were negative correlation between τ0 and water temperature for grass puffer (Y=–1.225X+70.05, R2=0.988, n=10, where Y was τ0 and X was temperature). This study confirmed that successful hatching of grass puffer was related to water temperature. Chromosome manipulation will be helpful for this species using cleavage frequency and τ0.