검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2017.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to confirm whether spontaneous adipocyte generation during chondrogenic induction culture affects the chondrogenic differentiation of porcine skin-derived stem cells (pSSCs). For this purpose, chondrogenic differentiation characteristics and specific marker gene expression were analyzed using cell lines showing different characteristics of spontaneous adipocyte formation. Of the four different lines of pSSCs, the pSSCs-IV line showed higher Oil red O (ORO) and glycosaminoglycan (GAG) extraction levels. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the levels of adipogenic markers peroxisome proliferator-activated receptor gamma 2 (PPARγ2) and adipocyte Protein 2 (aP2) mRNAs were significantly higher in pSSCs-IV than those of the other pSSC lines (P<0.05). Among three chondrogenic markers, collagen type II (Col II) and sex determining region Y-box (Sox9) mRNAs were strongly expressed in pSSCs-IV (P<0.05), but not in aggrecan (Agg), which was significantly higher in pSSCs-II (P<0.05). These results demonstrate that the spontaneous adipocyte generation during chondrogenic differentiation has a positive effect on the chondrogenesis of pSSCs. More research is needed on the correlation between adipocyte generation and cartilage formation.
        4,000원
        2.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to investigate the effect of activation method on the endoplasmic reticulum (ER) stress induction, apoptosis and in vitro development of porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by four activation methods; 1) electric stimulus (ES) (E), 2) ES+10 μM Ca-ionophore (A23187) treatment (EC), 3) ES+2 mM 6-dimethylaminopurine (6-DMAP) treatment (ED), or 4) ES+A23187 and 6-DMAP treatments (ECD). Parthenogenetic embryos were sampled to analyze x-box binding protein 1 (Xbp1) mRNA, ER stress-associated genes and apoptosis genes at 3 h after ES and the 1-cell and blastocyst stages. In the EC group, the band intensity of spliced Xbp1 (Xbp1s) mRNA was higher than those of the other groups at the 3 h and 1-cell stage, and higher than that of the E group at the blastocyst stage. Four ER stress-associated genes were expressed at the highest level in the EC group and weakly expressed in the ED group at 3 h after activation. However, most of the genes were highly expressed at the 1-cell and blastocyst stages with some variation in the EC and ECD groups. Expression of Bcl-2-associated X protein (Bax) and caspase-3 mRNA was significantly higher in the EC group than in the other groups at all development stages. The developmental rates to the blastocyst stage were higher in the ED and ECD groups than in the E and EC groups. These results suggest that the intracellular ER stress of parthenogenetic porcine embryos is affected by the activation method and subsequently lead to the apoptosis of embryos.
        4,000원
        3.
        2016.10 구독 인증기관·개인회원 무료
        This study was conducted to examine the effects of activation methods on the ER stress induction and subsequent apoptosis and in vitro development of porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by four activation methods; 1) electric stimulus(ES) with two DC pulses of 1.25 kV/cm, for 30 ㎲ (E), 2) ES + 10 μM Ca-ionophore (A23187) treatment for 5 min (EC), 3) ES + 2 mM 6-dimethylaminopurine treatment for 3 h (ED), or 4) ES + A23187 + 6-DMAP (ECD). After activation, parthenogenetic embryos were in vitro cultured in PZM-3 medium and sampled to analyze the x-box binding protein 1 (Xbp1) mRNA, ER stress-associated genes and apoptotic genes at 3 h post ES and the 1-cell and blastocyst stages. The un-spliced and spliced x-box binding protein 1 (Xbp1) mRNA were confirmed by RT-PCR. Also ER stress-associated genes, such as the C/EBP homologous protein (CHOP), binding protein (BiP), activating transcription factor 4 (ATF4) and glucose-regulated protein 94 (GRP94), and apoptotic genes were analyzed by real-time quantitative RT-PCR (RT-qPCR). The band intensities of spliced Xbp1 (Xbp1s) mRNA was higher in the EC group than other three groups at 3 h and the 1-cell stage, while it was higher in the ED groups compared with E group at the blastocyst stage. Four ER stress-associated genes were showed the highest expression in the EC group and weakly expressed in the ED group at 3 h. However, most of those genes were highly expressed in EC and ECD groups at the 1-cell and blastocyst stages with some variation. The expressions of Bcl-2-associated X protein (Bax) and caspase-3 mRNAs were significantly higher in EC group than other three groups at all stages. The developmental rate to the blastocyst stage was higher (p<0.05) in ED and ECD groups (32.1±3.8 to 34.6±2.2%) than that of E group (26.1±3.9%). These results suggest that the intracellular ER stress of parthenogenetic porcine embryos is affected by activation method and subsequently lead to the apoptosis of embryos.
        4.
        2014.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        We investigate the effect of L-glutathione (GSH), an antioxidant, treatment during the somatic cell nuclear transfer (SCNT) procedures on the in vitro development and DNA methylation status of bovine SCNT embryos. Bovine in vitro matured (IVM) oocytes were enucleated and electrofused with a donor cell, then activated by a combination of Ca-ionophore and 6-dimethylaminopurine. The recipient oocytes or reconstituted oocytes were treated with 50 μM GSH during these SCNT procedures from enucleation to activation treatment. The SCNT embryos were cultured for 7 days to evaluate the in vitro development, apoptosis and DNA methylation in blastocysts. The apoptosis was measured by TUNEL assay and caspase-3 activity assay. Methylated DNA of SCNT embryos at the blastocyst stages was detected using a 5-methylcytidine (5-MeC) antibody. The developmental rate to the blastocyst stage was significantly higher (P<0.05) in GSH treatment group (32.5±1.2%, 78/235) than that of non-treated control SCNT embryos (22.3±1.8%, 50/224). TUNEL assay revealed that the numbers of apoptotic cells in GSH treatment group (2.3±0.4%) were significantly lower (P<0.05) than that of control (3.8±0.6%). Relative caspase-3 activity of GSH treated group was 0.8±0.06 fold compared to that of control. DNA methylation status of blastocysts in GSH treatment group (13.1±0.5, pixels/ embryo) was significantly lower (P<0.05) than that of control (17.4±0.9, pixels/embryo). These results suggest that antioxidant GSH treatment during SCNT procedures can improve the embryonic development and reduce the apoptosis and DNA methylation level of bovine SCNT embryos, which may enhance the nuclear reprogramming of bovine SCNT embryos.
        4,000원
        5.
        2013.03 구독 인증기관 무료, 개인회원 유료
        The present study was conducted to examine the effect of antioxidant treatment during parthenogenetic activation procedure on the reactive oxygen species (ROS) levels and in vitro development of porcine parthenogenetic embryos. Porcine in vitro matured oocytes were activated by a combination of electric stimulus and 2 mM 6- dimethylaminopurine (6-DAMP) before in vitro culture. During the activation period, oocytes were treated with 50 μM β-mercaptoethanol (β-ME), 100 μM L-ascorbic acid (Vit. C) or 100 μM L-glutathione (GSH). To examine the ROS level, porcine parthenogenetic embryos were stained in 10 μM dichlorohydrofluorescein diacetate (H2DCFDA) dye 20 h after culture, examined under a fluorescence microscope, and the fluorescence intensity (pixels) were analyzed in each embryo. The parthenogenetic embryos were cultured for 6 days to evaluate the in vitro development. The apoptosis was measured by TUNEL assay. The H2O2 levels of parthenogenetic embryos were significantly lower in antioxidant treatment groups (26.9±1.6~29.1±1.3 pixels/embryo, p<0.05) compared to control (33.2±1.7 pixels/embryo). The development rate to the blastocyst stage was increased in antioxidant treatment groups (32.0~32.5%) compared to control (26.9%, p<0.05), although, there was no difference in apoptosis among groups. The result suggests that antioxidant treatment during parthenogenetic activation procedure can inhibit the ROS generation and enhance the in vitro development of porcine parthenogenetic embryos.
        4,000원
        6.
        2012.06 구독 인증기관 무료, 개인회원 유료
        This study was conducted to examine the optimal concentration and treatment time of antioxidants for inhibition of the ROS generation in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine oocytes were activated parthenogenetically, during which oocytes were treated with various antioxidants to determine the optimal concentrations and kind of antioxidants. Determined antioxidants were applied to oocytes during in vitro maturation (IVM) and/or SCNT procedures. Finally, antioxidant-treated SCNT embryos were compared with in vitro fertilized (IVF) embryos. H2O2 levels were analyzed in embryos at 20 h of activation, fusion or insemination by staining of embryos in 10 μM 2'7'-dichlorodihydrofluorescein diacetate (H2DCFDA) dye, followed by fluorescence microscopy. H2O2 levels of parthenogenetic embryos were significantly lower in 25 μM β- mercaptoethanol (β-ME), 50 μM L-ascorbic acid (Vit. C), and 50 μM L-glutathione (GSH) treatment groups than each control group (24.0±1.5 vs 39.0±1.1, 29.7±1.0 vs 37.0±1.2, and 32.9±0.8 vs 36.3±0.8 pixels/embryo, p<0.05). There were no differences among above concentration of antioxidants in direct comparison (33.6±0.9~35.2±1.1 pixels/embryo). Thus, an antioxidant of 50 μM Vit. C was selected for SCNT. H2O2 levels of bovine SCNT embryos were significantly lower in embryos treated with Vit. C during only SCNT procedure (26.4±1.1 pixels/embryo, p<0.05) than the treatment group during IVM (29.9±1.1 pixels/embryo) and non-treated control (34.3±1.0 pixels/embryo). Moreover, H2O2 level of SCNT embryos treated with Vit. C during SCNT procedure was similar to that of IVF embryos. These results suggest that the antioxidant treatment during SCNT procedures can reduce the ROS generation level of SCNT bovine embryos.
        4,000원
        7.
        2012.03 구독 인증기관 무료, 개인회원 유료
        The present study was conducted to examine the generation of reactive oxygen species (ROS) during micromanipulation procedures in bovine somatic cell nuclear transfer (SCNT) embryos. Bovine enucleated oocytes were electrofused with donor cells, activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. Oocytes and embryos were stained in dichlorodihydrofluorescein diacetate or 3'-(p-hydroxyphenyl) fluorescein dye and the H2O2 or ˙OH radical levels were measured. In vitro fertilization (IVF) was performed for controls. The samples were examined with a fluorescent microscope, and fluorescence intensity was analyzed in each oocyte and embryo. The H2O2 and ˙OH radical levels of reconstituted oocytes were increased during manipulation (37.2~49.7 and 51.0~55.2 pixels, respectively) as compared to those of mature oocytes (p<0.05). During early in vitro culture, the ROS levels of SCNT embryos were significantly higher than those of IVF embryos (p<0.05). These results suggest that the cellular stress during micromanipulation procedures can generate the ROS in bovine SCNT embryos.
        4,000원
        8.
        2018.03 KCI 등재 서비스 종료(열람 제한)
        This study investigates the endoplasmic reticulum (ER) stress and subsequent apoptosis in duced during somatic cell nuclear transfer (SCNT) process of porcine SCNT embryos. Porcine SCNT and in vitro fertilization (IVF) embryos were sampled at 3 h and 20 h after SCNT or IVF and at the blastocyst stage for mRNA extraction. The x-box binding protein 1 (Xbp1) mRNA and the expressions of ER stress-associated genes were confirmed by RT-PCR or RT-qPCR. Apoptotic gene expression was analyzed by RT-PCR. Before commencing SCNT, somatic cells treated with tunicamycin (TM), an ER stress inducer, confirmed the splicing of Xbp1 mRNA and increased expressions of ER stress-associated genes. In all the embryonic stages, the SCNT embryos, when compared with the IVF embryos, showed slightly increased expression of spliced Xbp1 (Xbp1s) mRNA and significantly increased expression of ER stress-associated genes (p<0.05). In all stages, apoptotic gene expression was slightly higher in the SCNT embryos, but not significantly different from that of the IVF embryos except for the Bax/Bcl2L1 ratio in the 1-cell stage (p<0.05). The result of this study indicates that excessive ER stress can be induced by the SCNT process, which induce apoptosis of SCNT embryos.