This study was conducted to examine the effect of new inoculants on in vitro digestibility and fermentation characteristics of high moisture rye silage. Rye was harvested at heading stage and divided into 5 treatments, following: No additives(CON); L. plantarum R48-27(NI1); L. buchneri R4-26(NI2); mixture of NI1 and NI2 at 1:1 ratio(MIX); and L. buchneri(LB). The rye forage was ensiled into 10 L bucket silo for 100 days. In vitro digestibility of dry matter and neutral detergent fiber were highest(p<0.05) in NI2 silage. The pH in NI2 and LB silages were lower(p<0.05) than CON silage. Lactate concentration was highest(p<0.05) in NI1 silage. While concentrations of acetate and propionate were highest(p<0.05) in MIX silage. Lactates : acetate ratio was highest(p<0.05) in NI1 silage, but lowest in LB silage. Butyrate concentrations of NI2 and LB silages were lower(p<0.05) than that in CON and NI1 silages. Lactic acid bacteria (LAB) count in all inoculated silages was higher(p<0.05) than that in CON silage, while yeast count in LB silage was lower than in CON, NI1, and MIX silages. In conclusion, application of NI2 inoculant could improve potentially fermentation quality and digestibility of high moisture rye silage.
To produce abiotic stress resistant transgenic cucumber, the cotyledonary node explants of cucumber (c.v. Eunsung) were inoculated with A. tumefaciens strain EHA105 containing the binary vector (pPZP211) carrying Nit gene. The 491 explants inoculated with bacterium solution for 30 min were maintained on 50 mg/L paromomycin contained shoot induction (SI) medium for first 2 weeks and then subcultured on 100 mg/L paromomycin to obtain transgenic adventitious shoots for 4 x 14 days. So far, 5 plant were selected, and then acclimated in soil. Of them, 3 transgenic plants with Nit gene were confirmed by Southern blot analysis.