검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        2.
        2008.06 구독 인증기관 무료, 개인회원 유료
        A mutation of UNCL, an inner nuclear membrane RNAbinding protein, has been found to eliminate mechanotransduction in Drosophila. UNCL is expressed in human periodontal tissue including in periodontal ligament (PDL) fibroblasts. However, it is unclear how a mechanical stimulus is translated into cellular responses in PDL fibroblasts. The aim of this study was to evaluate the effect of UNCl on mechanical stress related genes in PDL fibroblasts in response to mechanical stress. The mRNA of TGF-β, COX-2, and MMP-2 was up-regulated after UNCL inactivation in PDL fibroblasts under the compression force. Under the tensile force, inactivation of UNCL decreased the expression of Biglycan, RANKL, MMP-2, and TIMP-2 mRNAs while it increased the expression of TIMP-1. p38-MAPK was expressed in PDL fibroblasts under compression forces whereas phospho-ERK1/2, p65-NFkB, and c-fos were expressed under tension forces. The expression and phosphorylation of the mechanical stress related genes, kinases, and transcription factors were changed according to the types of stress. Furthermore, most of them were regulated by the inactivation of UNCL. This suggests that UNCL is involved in the regulation of mechanical stress related genes through the signaling pathway in PDL fibroblasts.
        4,000원
        3.
        2005.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Nuclear factor 1 (NFI) was discovered as a protein required for adenovirus DNA replication in vitro, but it is now clear that NFI protein plays an important role in the expression of many cellular genes. NFI-C null mice demonstrated aberrant odontoblast differentiation, abnormal dentin formation, and thus molar lacking roots while other tissues/or gans in the body, including ameloblasts appear to be unaffected and normal. However, little is known about the mechanism of NFI -C function in odontoblast differentiation and dentin formation. In this study, in order to elucidate the molecular mechanisms of odntoblast differentiation, we examined morphological characteristics of the aberrant odontoblast in NFI-C null mice. we also evaluate the expression of dentin sialophosphoprotein (DSPP) and bone sialoprotein (BSP) mRNAs in the MDPC-23 cells by northern analysis after over-expression and inactiγation of NFI -C into mouse MDPC-23 cells Odontoblasts of the NFI-C null mouse were round in shape, lost their polarity, organized as a sheet of cells, and trapped in osteodentin-like mineralized tissue. Abnormal odontoblasts of NFI-C null mouse revealed the absence of an intercellular junctional complex known as the t erminal webs. MDPC-23 cells started to express DSPP mRNA beginning from the postnatal day of 14 and showed a steady increase as differentiating into odontoblasts. Over-expression of NFI -C increased the expression of DSPP mRNA. Inactivation of NFI - C induced BSP mRNA expression. These results suggest that NFI-C plays an important role in odontoblast differentiation in a cell-type specific manner and thus in dentin formation
        4,000원