Recently, methods that usea carbon-based filler, a conductive nanomaterial, have been investigated to develop composite fillers containing dielectric materials. In this study, we added geometric changes to a carbon fiber, a typical carbon-based filler material, by differentiating the orientation angle and the number of plies of the fiber. We also studied the electrical and electromagnetic shield characteristics. Based on the orientation angle of 0˚, the orientation angle of the carbon fiber was changed between 0, 15, 30, 45, and 90˚, and 2, 4, and 6 plies were stacked for each orientation angle. The maximum effect was found when the orientation angle was 90˚, which was perpendicular to the electromagnetic wave flow, as compared to 0˚, in which case the electrical resistance was small. Therefore, it is verified that the orientation angle has more of an effect on the electromagnetic interference shield performance than the number of plies.
The present study was planned to analyze the nutritional quality, microbial counts and fermentative acids in Italian ryegrass (IRG) 80% and alfalfa 20% (IRG-HV) mediated silage inoculated with lactic acid bacteria (LAB) as a probiotic strain for 3 months. Crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF), total digestible nutrient (TDN) and In-vitro dry matter digestibility (IVDMD), lactic acid bacteria (LAB), yeast and fungi counts and fermentation metabolites such as lactic acid, acetic acid and butyric acids were analyzed. The result shows that the nutritional quality and metabolite profiles of silage were significantly improved with LAB. For microbial counts, LAB showed dominant followed by yeast as compared with control silage. The pH of the silage also reduced significantly when silage inoculated with LAB. The result confirmed that silage preparation using different crops with L. plantarum inoculation is most beneficial for the farmers.
The aim of present study was to improve the quality of silage using lactic acid bacteria (LAB) and chlorella as a supplement. Italian ryegrass (IRG) mediated silage was prepared with lactic acid bacteria (L. plantarum) and different concentration of chlorella. We analyzed the nutritional profiles such as crude protein (CP), acid detergent fiber (ADF) neutral detergent fiber (NDF), total digestible nutrient (TDN) and in-vitro dry matter digestibility (IVDMD), microbial counts and fermentative acids such as lactic acid, acetic acid and butyric acid in the control and experimental silage after three months. It shows increased crude protein content and also maintains the rest of nutritional values as compared with control silage. LAB inoculation with chlorella as supplementation slightly reduced the pH of the silage. In addition, it increased the fermentative acids production as compared with control silage and inhibits the undesired microbial growth especially fungi in the silage. Therefore, we suggest that LAB inoculation and chlorella supplementation to the IRG mediated silage could be improved the nutritional quality of the silage which is an intrinsic feature for the application in the preparation of animal feeds and functional foods.
Urokinas type plasminogen activator (uPA) has been used as a therapeutic agent for treating human diseases such as thrombosis. Attempts to transgenically overexpress the uPA in animal bioreactors have been hampered due to side effects associated with this functional protein hormone on homeostasis. Recently, chicken has been emerged as a potential candidate for use as bioreactor to produce proteins of pharmaceutical importance. Since this species has low homology uPA sequence with mammals, we hypothesized that chicken could be used as a potential bioreactor for production of human uPA. In this study, using replication‐defective Murine Leukemia Virus (MLV)‐based retrovirus vectors encapsidated with Vesicular Stomatitis Virus G Glycoprotein (VSV‐G), we attempted to make transgenic chicken expressing human uPA (huPA). The recombinant retrovirus was injected beneath the blastoderm of non‐incubated chicken embryos (stage X, at laying). After 21 days of incubation (at hatching), all of the 38 living chicks that assayed, were found to express the vector‐encoded huPA gene in various organs and tissues, which was under the control of the Rous Sarcoma Virus (RSV) or Cytomegalovirus (CMV) promoter. Using specific primer set for huPA, PCR and RTPCR analyses of gDNA isolated from these samples demonstrated these chickens were transgenic for huPA. Furthermore, successful germ line transmission of huPA transgene was confirmed and next generation whole body huPA transgenic chickens were also produced. We also assayed huPA protein titer in blood (17.1 IU/ml) and eggs (4.4 IU/ml) of whole body huPA transgenic chicken. Thus, our results demonstrated that chicken could be used as bioreactors to produce huPA.