The chemical kinetics of the steam reforming of the pyrolysis oil of polypropylene (PP) over a ruthenium-based catalyst has been examined as a function of pyrolysis oil and steam partial pressures at various temperatures. The activation energy of steam reforming over Ru/Al2O3 catalyst is 136 kJ/mol, and the reaction orders of pyrolysis oil and steam are 0.42 and 0.24, respectively. Fitting the experimental data to the Langmuir?Hinshelwood expression shows that the steamreforming reaction probably proceeds via the dissociative adsorption of pyrolysis oil and steam on two different sites.
A RPS (Renewable Portfolio Standard) for South Korea became effective in 2012 with a beginning renewable electricity quota of 2% of total generation of capacities exceeding 500 MW, increasing to 10% by 2022. However, almost of all the coal-fired power plant are not designed to co-firing large amount of biomass with coal. In practice, the biomass cofiring rate is commonly 5 -10% of total heat input. In the case of biomass import, it will cost a great deal on the transshipment, transportation and storage of biomass. Therefore new research and development on the biomass fuel with high energy density in needed to reduce logistics cost on transportation of the biomass fuel. Torrefaction is a thermochemical treatment process of biomass at temperatures ranging between 200 and 300oC. During this process, 70% of the mass is retained as a solid product, and retain 90% of the initial energy content. The physical and chemical properties of torrefied biomass are similar to those of coal. Therefore co-firing torrefied biomass could increase the co-firing percentages much further to even 40%. This review paper looks into the torrefaction technologies of biomass, the technical characteristic of torrefaction reactors, the overview of torrefaction project and the future prospects of torrefaction.
Magnetite (Fe3O4) has been prepared directly to avoid the reduction process prior to the H2 production from the high temperature water gas shift reaction of the simulated waste derived synthesis gas. Citric acid has been employed as a complexing agent for the direct synthesis of magnetite. Notably, without the reduction process, the catalyst prepared at the citric acid molar ratio of 1.0 showed 80% CO conversion at 350℃ at a gas hourly space velocity of 40,057 h-1.
Korea has adopted a federal renewable electricity standard that begins at 2% in 2012 and requires companies to source 10% of their electricity from renewables by 2022. Therefore the interest in the use of biomass as a renewable energy resource is growing. By importing biomass, the Korea, which produces too little biomass of its own, can meet the needs of the renewable energy sectors. In the case of import biomass, it will cost a great deal on the transportation and logistics of biomass materials. Therefore new research and development on the biomass fuel with high energy density is needed to reduce logistics cost on transportation of the biomass fuel. Torrefaction is a thermochemical treatment process of biomass at temperatures ranging between 200 and 300oC. Typically, 70% of the mass is retained as a char product, containing 90% of the initial energy content. Torrefaction experiments on samples of EFB were performed in a fixed bed reactor to determine the effect of operation variables such as reaction temperature (205-310oC), reaction time (20-40 min) and air ratio (0-0.18) on char yield and characteristics. Increase of the torrefaction temperature led to a decrease of the yield of the char. The heating value of char increased with the increase of the reaction temperature, because the carbon content increased and hydrogen and oxygen content decreased. The yield of char decreased with increasing air ratio. This suggested that oxidation of EFB occurred during torrefaction in the presence of oxygen.