In agricultural ecosystems, the relationship between insect pests and hosts is important, as insect pests can invade hosts, increasing insect pest density that threatens the hosts’ health. Insect pests and hosts are negatively correlated and affect the environment around them. i.e., host health, environment, and insect pest density are causally related, and the environment affects insect pest density. Deep learning is method of machine learning based on neural network theory. This approach enables handling uncertain environmental factors that simultaneously impact the density of F. occidentalis. Environmental factors affecting the density fluctuation of F. occidentalis selected atmosphere factors, soil factors, and host factors. This study aims to F. occidentalis monitoring using deep learning models inputting environmental factors.
As climate changes and global trade volume increases, the spread of invasive alien species accelerates. Early prevention before occurrence is crucial for invasive pest control. Therefore, this study modeled the current and future potential distribution of the tomato leafminer(Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae), the most significant pest affecting tomatoes, in Korea. This pest primarily feeds on Solanaceae crops and can cause extensive damage, resulting in 50-100% loss of crops in greenhouses or fields. While previously unreported in Korea, it invaded China in 2017, indicating a potential threat to Korea. The potential distribution of the tomato leafminer in Korea under current and three future climate scenarios (SSP1-26, SSP3-70, SSP5-85) was predicted using the MaxEnt model. Additionally, elevation and land cover were incorporated as abiotic factors considering the ecological characteristics of the pest.
A causality exists between insect density and plant health, where plant health is affected by both the plant’s potential and environmental factors. In other words, causality is possible between insect density and environmental factors, allowing for the analysis of insect density based on these environmental factors. Machine learning enables studying insect density alongside environmental factors, providing insights into the causality between insects, the environment, and plant health. Machine learning is a methodology that involves the design of models by learning patterns from input data. This study aims to predict F. occidentalis density by sampling environmental factors and applying them to machine learning models.
For effective control of Frankliniella occidentalis, one of polyphagous pests with resistance to insecticides, necessitates the implementation of an integrated pest management strategy. Therefore, estimation of pest density is essential and this is achieved through the application of spatial statistical analysis methods. Because traditional methods often overlook the correlation between sampling locations and data, geostatistical analysis using variogram and kriging is introduced. Variogram provides information on the independent distance between data points. Kriging is a spatial interpolation technique for estimating the values at unsampled locations. For assessing model fitness, cross-validation is used by comparing predicted values with actual observations. This study focuses on the application of geostatistical techniques to estimate F. occidentalis density in hot pepper greenhouse, thereby contributing to making decision.
Climate change and biological invasions are the greatest threats to biodiversity, agriculture, health and the global economy. Tomato leafminer(Tuta absoluta) (Meyrick) (Lepidoptera: Gelechiidae) is one of the most important threats to agriculture worldwide. This pest is characterized by rapid reproduction, strong dispersal ability, and highly overlapping of generations. Plants are damaged by direct feeding on leaves, stems, buds, calyces, young ripe fruits and by the invasion of secondary pathogens which enter through the wounds made by the pest. Since it invaded Spain in 2006, it has spread to Europe, the Mediterranean region, and, in 2010, to some countries in Central Asia and Southeast Asia. In East Asia, Tomato leafminer was first detected in China in Yili, Xinjiang Uygur Autonomous Region, in 2017. There is a possibility that this pest will invade South Korea as well. This study provides this by the use of MaxEnt algorithm for modelling the potential geographical distribution of Tomato Leafminer in South Korea Using presence-only data.
Since the importance of integrated pest management to minimize environmental damage and maximize pest control effectiveness has emerged, efforts to put it into practice have continued. To implement IPM, it is necessary to estimate the economic injury level to determine the control method by identifying pests and weeds that damage the quantity and quality of crops in the field, investigating the occurrence level, and calculating the ratio of cost and effectiveness. Also, damage to host plants caused by increased density of insect pests appears to change plant’s health that key factor for managing crops. Therefore, understanding the relationship between the density of pests and the damage to the host plants is necessary. This study aims to analyze the causal relationship between the density of insect pests and damage to the host plants for estimating the economic injury level of insect pests on the host plants and investigating the possibility of pest control decision-making using plant health status.