Pentachlorophenol (PCP), as one of the common pesticide and preservatives, is easily accumulated in living organisms. Considering the high toxicity of PCP, the development of an effective and sensitive inspection method to determine the residual trace amounts of PCP continues to be a significant challenge. Herein, a convenient and sensitive electrochemical sensor is constructed by modifying glassy carbon electrode with cerium dioxide ( CeO2) nanoparticles anchored graphene ( CeO2-GR) to detect trace PCP. Benefiting from the two-dimensional lamellar structural advantages, the extraordinary electron-transfer properties, as well as the intensive coupling effect between CeO2 nanoparticles and graphene, the afforded CeO2- GR electrode nanomaterial possesses excellent electrocatalytic activity for the oxidation of PCP. Under the optimum synthetic conditions, the PCP oxidation peak currents of developed CeO2– GR sample exhibit a wide linear range of 5–150 μM. Moreover, the corresponding detection limit of PCP on the CeO2– GR electrode is as low as 0.5 μM. Apart from providing a promising electrochemical sensor, this work, most importantly, promotes an efficient route for the construction of highly active sensing electrode materials.
It is necessary to evaluate the resistance to disease among genetic resources for development of disease resistant grapes. This study was conducted to screen the resistance to crown gall in muscadine and Florida hybrid bunch grapes by pathogen inoculation. In order to compare the responses to infection with different pathogen strains, muscadine and Florida hybrid grapes were inoculated with 3 strains of Agrobacterium vitis. Although there were different levels crown gall formation among grape cultivars, there little variation in response to inoculated strains. Among 29 muscadine cultivars tested by inoculation of A. vitis ‘C4612’, most of them were shown to be susceptible, and ‘Gold Isle’ and ‘Africa Queen’ were highly susceptible, and two cultivars, ‘Welder’ and ‘Jumbo’ were found to be resistant to crown gall disease. Among Florida hybrid grapes, ‘Daytona’, ‘Stover’, and ‘Swanee’ were susceptible and ‘Blanc du Bois’ was moderately susceptible to crown gall. Because muscadine grapes have been actively utilized as useful genetic resources for development of new grape varieties by intersub-genus cross, this result from the screening of resistance among muscadine grapes can provide valuable information in breeding programs of grape resistant to crown gall.