Various transition metal oxides are deposited on the surface of materials such as stainless steel, which is used in the coolant systems of nuclear power plants. The task of removing harmful radionuclides can be solved through the dissolution reaction of the deposited corrosion oxide layer. In this study, for the first time, the reaction thermodynamics of the hydrazine-based reductive metal ion decontamination (HyBRID) reaction developed by the Korea Atomic Energy Research Institute were studied considering the formation of a strong ion − ligand chemical bond complex between Cu ions and hydrazine. When considering complex formation, we found that it had a significant impact on the thermodynamic decontamination reactions of magnetite, nickel ferrite, and chromite. The reactions were proven to be much more thermodynamically favorable than the reaction energies reported thus far, which did not consider complex formation. We demonstrated that not only the thermodynamic energy but also the structures of the HyBRID reaction products can be significantly changed, depending on complex formation considerations.
Decontamination is one of the important processes for dismantling nuclear power plants. The purpose of decontamination is to reduce the radiation levels of contaminated nuclear facilities, ensuring the safety of workers involved in decommissioning and minimizing the amount of radioactive waste. In this study, we investigate the reaction mechanisms and their thermodynamic energies of the HyBRID (Hydrazine-Based Reductive participated metal Ion Decontamination) process for decontamination of the primary coolant system of a nuclear power plant. We computed the thermodynamic properties of HyBRID dissolution mechanisms in which corrosion metal oxides accumulated in the primary coolant systems along with radionuclides are dissolved by HyBRID decontamination agents (H2SO4/N2H4/CuSO4). The HyBRID reaction mechanism has been studied using a commercial database (HSC Chemistry®), but Cu ions have been used instead of Cu-hydrazine complexes when calculating reactions due to the absence of thermodynamic properties for Cu-hydrazine complexes. To address this limitation, we supplemented the quantum calculations with Cu-hydrazine complexes using the density functional calculations. It is intended to simulate a more practical reactions by calculating the reactions considering Cu-hydrazine complexes, and to improve understanding of the HyBRID dissolution reactions by qualitatively and quantitatively comparing the reactions without considering the complex formation.