In recent years, anti-PID (Potential Induced Degradation) technologies have been studied and developed at various stages through- out the solar value chain from solar cells to systems in an effort to enhance long-term reliability of the photovoltaics (PV) system. Such technologies and applications must bring in profits economically for both manufacturers of solar cell/module and investors of PV systems, simultaneously for the development of the PV industry. In this study two selected anti-PID technologies, ES (modification of emitter structure) and ARC (modification of anti-reflective coating) were compared based on the economic features of both a cell maker with 60MW production capacity and an investor of 1MW PV power plant. As a result of this study, it is shown that ARC anti-PID technology can ensure more profits over ES technology for both the cell manufacturer and the investor of PV power plant.
In recent years, there has been developed anti-PID technologies(Potential Induced Degradation) in various levels from solar cell to module and to system to enhance of the long life reliability of photovoltaics(PV) system. Such technologies must economically ensure profits for both manufacturers of solar cells and investors of PV system simultaneously for PV industry development. This paper describes a comparison between and selection from two anti-PID technologies in the solar cell level, ES(modification of emitter structure) and ARC(modification of anti-reflective coating) based on the economic features of anti-PID solar cell production system with 60MW capacity for a solar cell maker and a 1MW PV power plant installed with PV modules using anti-PID solar cells. From the comparison between ES and ARC, it is shown that ARC anti-PID technology can make more profit for both a solar cell maker and a PV power plant investor.