검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2017.05 구독 인증기관·개인회원 무료
        The acetyltransferase Tip60 (Kat5) is a member of the MYST family of HATs that was initially identified as a cellular protein. TIP60 acetylates histone and non-histone proteins, and is involved in diverse biological processes, including apoptosis, cell cycle, and DNA damage responses. In this study, a specific inhibitor of TIP60, Nu 9056, was used to study the function and its regulatory mechanism of Tip60 in the porcine preimplantation embryonic development. The results showed that inhibition of TIP60 impaired the embryonic development due to induce DNA damage through ATM-p53-p21 pathway, it was evidenced by expression of γH2A in the nuclei of blastocysts. In addition, TIP60 inhibition decreased efficiency of DNA repair by regulating P53 binding protein 1 expression. Furthermore, autophagy was induced following TIP60 inhibition through modulating microtubule-associated protein 1A/1B-light chain 3 expression. In conclusion, the results suggest that TIP60 plays a critical role in early embryonic development via regulation of DNA damage and its repairs.
        2.
        2016.10 구독 인증기관·개인회원 무료
        Fatty acid synthesis (FASN) is an enzyme responsible for the de novo synthesis of long-chain fatty acids. During oncogenesis, FASN plays a role in growth and survival rather than acting within the energy storage pathways. Here, the function of FASN during early embryonic development was studied using its specific inhibitor C75. We found that the presence of the inhibitor reduced blastocyst hatching. FASN inhibition decreased Cpt1 expression, leading to a reduction in mitochondrial copy numbers and ATP content. This inhibition of FASN results in the down-regulation of the AKT pathway, thereby triggering apoptosis through the activation of the p53 pathway. Activation of the apoptotic pathways also leads to increased accumulation reactive oxygen species and autophagy. In addition, the FASN inhibitor can impair cell proliferation, a parameter of blastocyst quality for outgrowth. The level of OCT4, an important factor in embryonic development, decreased after treatment with the FASN inhibitor. These results show that FASN exerts an effect on the early embryonic development by regulation of both fatty acid oxidation and the AKT pathway in pigs.
        3.
        2013.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Recently, self-propagating high-temperature synthesis (SHS), related to metallic and ceramic powder inter- actions, has attracted huge interest from more and more researchers, because it can provide an attractive, energy-efficient approach to the synthesis of simple and complex materials. The adiabatic temperature Tad and apparent activation energy analysis of different thermit systems plays an important role in thermodynamic studies on combustion synthesis. After establishing and verifying a mathematic calculation program for predicting adiabatic temperatures, based on the thermo- dynamic theory of combustion synthesis systems, the adiabatic temperatures of the NiO/Al aluminothermic system dur- ing self-propagating high-temperature synthesis were investigated. The effect of a diluting agent additive fraction on combustion velocity was studied. According to the simulation and experimental results, the apparent activation energy was estimated using the Arrhenius diagram of ln(v/Tad)~1/Tad based on the combustion equation given by Merzhanov et al. When the temperature exceeds the boiling point of aluminum (2,790 K), the apparent activation energy of the NiO/ Al aluminothermic system is 64 ± 14 kJ/mol. In contrast, below 2,790 K, the apparent activation energy is 189 ± 15 kJ/ mol. The process of combustion contributed to the mass-transference of aluminum reactant of the burning compacts. The reliability of the simulation results was experimentally verified.
        4,000원
        4.
        2016.10 서비스 종료(열람 제한)
        Background : Invitro antioxidant activity, polyphenol and flavonoid aglycone contents in black and green tea products of balloon flower leaves were investigated to provide valuable information for the further development and utilization of resources of Platycodon grandiflorum. Methods and Results : Flavonoid aglycone contents were investigated using HPLC (SHIMADZU, Japan) with a hypersil ODS column (125 mm × 4 mm, 5-μm particle, HP). DPPH and ABTS radical scavenging activities were measured by method of Lee & Lee (2004) with slight modification. Antioxidant activity, polyphenol and flavonoid contents in green tea were significantly higher than these in black tea. PC analysis indicated that first principal components explained 79.9% of the total variability for five traits investigated. PC2 explained 19.7% of the variation. Conclusion : It can be concluded from these results that these characteristics can reveal the active compound variation of black and green tea products of balloon flower leaves. These results provide scientific evidence for the utilization of balloon flower leaves.