검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.05 구독 인증기관·개인회원 무료
        Colloid-facilitated migration has been significantly concerned with the acceleration of the radionuclide mobility in the HLW repository. In the repository system, the compacted bentonite, which is the buffer material, could be the major source for colloid generation; hence, the understanding of colloid generation from the bentonite is the essential to expect the colloid-facilitated radionuclide migration. This study aimed to investigate the colloid generation using a bentonite-based micro-scale flow path system, which called microfluidics. In order to fabricate the microfluidics, direct milling method was applied to make a mold by computer numerical control. The fabricated mold applied to prepare the microfluidic chip by Polydimethylsiloxane (PDMS), in which the size of microchannel was designed to be one micrometer. Initially, sylgard 184 and curing agent mixed and stirred for 10 min, afterwards the bubbles in the paste was removed in the vacuum desiccator for 30 min. Then the paste was poured into the mold, and finally dried for 4 hours at 80°C in a dry oven. The compacted Ca-bentonite chip was prepared by the cold isostatic pressing (CIP) method with the dry density of 1.6 g·cm−3. The microfluidic chip and compacted bentonite chip were assembled by an acryl jig, the flow rate was adjusted by 20 mL syringe equipped syringe pump. The degree of colloid generation accompanied with the erosion of bentonite was gravimetrically examined after the experiment. The effect of the pH and ionic strength on the colloid formation was investigated through the particle size, stability and aggregation. To the best of our knowledge, this is the first examination for the colloid generation using microfluidics; these results would give information to understand the colloid formation from the compacted Ca-bentonite in the HLW repository system.
        2.
        2009.02 KCI 등재 서비스 종료(열람 제한)
        For diagnoses of digestive organs, capsule endoscopes are widely used and offer valuable information without patient’s discomfort. A general capsule endoscope which consists of image sensing module, telemetry module and battery is able to move along gastro-intestinal tracts passively only through peristaltic waves. Thus, it is likely to have some limitations for doctor to acquire images from the desired organs and to diagnose them effectively. As solutions to these problems, a locomotive function of capsule endoscopes has being developed. We have proposed a capsule-type microrobot with synchronized multiple legs. However, the proposed capsular microrobot also has some limitations, such as low speed in advancement, inconvenience to controlling the microrobot, lack of an image module, and deficiency in a steering module. In this paper, we will describe the limitations of the locomotive microrobot and propose solutions to the drawbacks. The solutions are applied to the capsular microrobot and evaluated by in-vitro tests. Based on the experimental results, we conclude that the proposed solutions are effective and appropriate for the locomotive microrobot to explore inside intestinal tracts.