검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 108

        62.
        2009.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Transverse velocity vectors can be determined from a pair of images successively taken with a time interval using an optical flow technique. We have tested the performance of the new technique called NAVE (non-linear affine velocity estimator) recently implemented by Chae & Sakurai using real image data taken by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite. We have developed two methods of estimating the errors in the determination of velocity vectors, one resulting from the non-linear fitting σv and the other εu resulting from the statistics of the determined velocity vectors. The real error is expected to be somewhere between σv and εu. We have investigated the dependence of the determined velocity vectors and their errors on the different parameters such as the critical speed for the subsonic filtering, the width of the localizing window, the time interval between two successive images, and the signal-to-noise ratio of the feature. With the choice of vcrit = 2 pixel/step for the subsonic filtering, and the window FWHM of 16 pixels, and the time interval of one step (2 minutes), we find that the errors of velocity vectors determined using the NAVE range from around 0.04 pixel/step in high signal-to-noise ratio features (S/N ~ 10), to 0.1 pixel/step in low signa-to-noise ratio features (S/N ~ 3) with the mean of about 0.06 pixel/step where 1 pixel/step corresponds roughly to 1 km/s in our case.
        4,000원
        65.
        2009.04 구독 인증기관·개인회원 무료
        66.
        2009.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A necessary condition for the formation of a filament is magnetic helicity. In the present paper we seek the origin of magnetic helicity of intermediate filaments. We observed the formation of a sinistral filament at the boundary of a decaying active region using full-disk Hα images obtained from Big Bear Solar Observatory. We have measured the rate of helicity injection during the formation of the filament using full-disk 96 minute-cadence magnetograms taken by SOHO MDI. As a result we found that 1) no significant helicity was injected around the region (polarity inversion line; PIL) of filament formation and 2) negative helicity was injected in the decaying active region. The negative sign of the injected helicity was opposite to that of the filament helicity. On the other hand, at earlier times when the associated active region emerged and grew, positive helicity was intensively injected. Our results suggest that the magnetic helicity of the intermediate filament may have originated from the helicity accumulated during the period of the growth of its associated active region.
        4,000원
        1 2 3 4 5