The key regulators of apoptosis are the interacting protein of the Bcl-2 family. Bcl-2, an important member of this family, blocks cytochrome C release by sequestering pro-apoptotic BH3-only proteins such as Bid, Bad, Bax and Bim. The pro-survival family members (Bcl-2, Bcl-XL, Bcl-W) are critical for cell survival, since loss of any of them causes cell death in certain cell type. However, its role during early porcine embryonic development is not sufficient. In this study, we traced the effects of Bcl-2 inhibitor, ABT-737, on early porcine embryonic development. We also investigated several indicators of developmental potential, including gene expression (apoptosis-related genes) and apoptosis, which are affected by ABT-737. Porcine embryos were cultured in the PZM-3 medium with or without ABT-737 for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without ABT-737 (14.7±3.0 vs 30.3±4.8%, p<0.05). TUNEL assay showed that the number of containing fragmented DNA at the blastocyst stage increased in the ABT-737 treated group compared with control (4.7 vs 3.7, p<0.05). The mRNA expression of the pro-apoptotic gene Bax increased in ABT-737 treated group (p<0.05), whereas expressions of the anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-XL, Bcl-W) decreased (p<0.05). Also, expressions of the ER stress indicator genes (GRP78, XBP-1 and sXBP-1) increased in ABT-737 treated group (p<0.05). In conclusion, Bcl-2 is closely associated with of apoptosis- and ER stress-related genes expressions and developmental potential in pig embryos.
Freezing of bovine blastocysts has been proposed as a tool to improve the feasibility of cattle production by using embryo transfer technique. However, the low efficiency of frozen-thawed embryos survival and further development is a crucial problem. Thus, we examined the effect of artificial shrinkage before vitrification of bovine expanded, hatched and SCNT embryos on the survival rate, apoptosis index and further development after thawing. Expanded, hatched and SCNT embryos were vitrified after artificial shrinkage, which was performed by puncturing the blastocoele with a pulled pasteur pipet. Artificial shrinkage of the blastocyst was achieved after pushing a pulled pasteur pipet into the blastocoele cavity until it contracted. The shrunken and not shrunken embryos were exposed to cryoprotectant solution in 7.5% ethylene glycol-7.5% DMSOPBS with 20% FBS for 5 min. They were placed in a small volume of vitrification solution (15% ethylene glycol+15% DMSO+PBS+20% FBS+0.5 M sucrose) and plunged into liquid nitrogen on a cryotop. Then, after thawing, cryoprotectant was diluted in 1.0 M, 0.5 M, 0.25 M, and 0 M sucrose for 1, 3, 5, and 5 min. Under the optimal conditions, overall efficiency of the survival rate of bovine expanded, hatched, SCNT embryos in artificial shrinkage groups was higher compared with non-artificial shrinkage groups (p< 0.05). Especially, the numbers of TUNEL-positive nuclei in artificial shrinkage groups were significantly reduced than those of non-artificial shrinkage groups among frozen-thawed expanded, hatched, and SCNT blastocysts (p< 0.05). Our results showed that survival rates in cryopreserved expanded, hatched, SCNT embryos could be improved by reducing the fluid content. Therefore, we suggest that artificial shrinkage method is a effective pretreatment technique for the cryotop vitrification of expanded, hatched, SCNT bovine blastocysts.
Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of several cells. In our previous study, inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the pig embryonic and primary cells was reported. However, its role during early bovine embryonic development is not sufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on early bovine embryonic development. We also investigated several indicators of developmental potential, including structural integrity, gene expression (apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Bovine embryos were cultured in the CR1-aa medium with or without 17-AAG for 7 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG (33.1±9.6 vs 21.7± 8.3%). The structural integrity of the blastocysts was examined by differential staining. Blastocysts from the dbcAMP- treated group had higher numbers of ICM, TE, and total cells than those from the untreated group. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (11.2 vs 3.9, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation bovine blastocysts. The m-RNA expression of the pro-apoptotic gene (Bax) increased in 17-AAG treated group, whereas expression of the antiapoptotic gene (Bcl-XL) decreased. In conclusion, Hsp90 also appears to play a direct role in bovine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with apoptosis-related genes expression in developing bovine embryos.
Autophagy is a process of intracellular bulk protein degradation, in which the accumulated proteins and cytoplasmic organelles are degraded. It plays important roles in cellular homeostasis, apoptosis, and development, but its role during early embryo development remains contentious. Therefore, in the present study, we investigated the effects of 3-methyladenine (3-MA) on early embryonic development in pigs. we also investigated several indicators of developmental potential, including mitochondrial distribution, genes expressions (autophagy-, apoptosis- related genes), apoptosis and ER-stress, which are affected by 3-MA. After in vitro maturation and fertilization, presumptive pig embryos were cultured in PZM-3 medium supplemented with 3-MA for 2 days at 39℃, 5% CO2 in air. Developmental competence to the blastocyst stage in the presence of 3-MA was gradually decreased according to increasing concentration. Thus, all further experiments were performed using 2 mM 3-MA. Blastocysts that developed in the 3-MA treated group decreased LC3-II intensity and expressions of autophagy related genes than those of the untreated control, resulting in down-regulates the autophagy. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 3-MA treated group compared with control (6.0±1.0 vs 3.3±0.6, p<0.05). Also, the expression of the pro-apoptotic gene Bax increased in 3-MA treated group, whereas expression of the anti-apoptotic gene Bcl-XL decreased. Mito Tracker Green FM staining showed that blastocysts derived from the 3-MA treated group had lower mitochondrial integrity than that of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. Then, the expression of the spliced form of pXBP-1 product (pXBP-1s) increased in 3-MA treated group, resulting increase of ERstress. Taken together, these results indicate that inhibition of autophagy by 3-MA is closely associated with apoptosis and ER-stress during preimplantation periods of porcine embryos.
Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of cancer cell. Inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the cancer cell was reported. However, its role during oocyte maturation and early embryo development is very insufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on meiotic maturation and early embryonic development in pigs. We also investigated several indicators of developmental potential, including structural integrity, gene expression (Hsp90-, cell cycle-, and apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Then, we examined the roles of Hsp90 inhibitor on viability of primary cells in pigs. Porcine oocytes were cultured in the NCSU-23 medium with or without 17-AAG for 44 h. The proportion of GV arrested oocytes was significantly different between the 17-AAG treated and untreated group (78.2 vs 34.8%, p<0.05). After completion of meiotic maturation, the proportion of MII oocytes was lower in the 17-AAG treated group than in the control group (27.9 vs 71.0%, p<0.05). After IVF, the percentage of penetrated oocytes was significantly lower in the 17-AAG treated group (25.2%), resulting in lower normal pronucleus formation (2PN of 14.6%). Therefore, the inhibition of meiotic progression by Hsp90 inhibitor played a critical role in fertilization status. Porcine embryo were cultured in the PZM-3 medium with or without 17-AAG for 6 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (7.5 vs 4.4, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation porcine blastocysts. The mRNA expressions of cell cycle-related genes were down-regulated in the 17-AAG treated group compared with control. Also, the expression of the pro-apoptotic gene Bax increased in 17-AAG treated group, whereas expression of the anti-apoptotic gene Bcl-XL decreased. However, the expression of ER stress-related genes did not changed by 17-AAG. Cultured pESF cells were treated with or without 17-AAG and used for MTT assay. The results showed that viability of pESF cells were decreased by treatment of 17-AAG (2 μM) for 24 hr. These results indicated that 17-AAG decreased cell proliferation and increased cell death. Expression patterns Hsp90 complex genes (Hsp70 and p23), cell cycle-related genes (cdc2 and cdc25c) and apoptosis-related genes (Bax and Bcl-XL) were significantly changed by using RT-PCR analysis. The spliced form of pXbp-1 product (pXbp-1s) was detected in the tunicamycin (TM) treated cells, but it is not detected in 17-AAG treated cells. In conclusion, Hsp90 appears to play a direct role in porcine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with cell cycle- and apoptosis-related genes expression in developing porcine embryos.
본고는 북한강유역 청동기시대 취락의 전개와 석기제작시스템에 관한 연구이다. 주거지의 구조와
출토유물을 통해 볼 때, 돌대문토기문화, 가락동유형문화, 역삼동유형문화, 각형토기문화 등 다양한
문화요소를 받아들인 전기의 문화는 역삼동유형의 문화를 기반으로 하는 지역성이 강한 중기의 문화
로 전개되며 후기에 이르러 주거지의 규모가 축소되면서 점토대토기문화와도 접촉한다. 전기 중·후
엽 역삼동유형의 주거지의 내부구조가 노지중심의 구조에서 작업공간이 분리되면서 이색점토구역이
설치되고 취락내에서는 공방지가 성행하게 된다. 즉, 중기에는 이색점토구역이 설치된 주거지와 함께
공방지의 수적 증가가 관찰되고 후기에는 규모가 대폭 축소된 방형주거지가 출현하며 공방지 또한 지
속된다. 이러한 전개과정 속에서 주거지의 내부구조변화와 공방지의 출현이 석기의 제작과 밀접한 관
련이 있음을 확인하였다. 인접한 석재 산지로부터 조달된 석재의 보관·선별·분할·분배는 공방지에
서 공동작업을 통해, 분배된 석재를 선택적으로 이용하는 석기의 세부제작공정은 개별주거지에서 행
해지는 병행적인 석기제작시스템의 확립과정을 제시하였다. 이와 같은 석기제작시스템의 확립과정은
건축기술의 차원에서의 주거구조의 변화와 취락내 독립적인 공방지 출현과 관련이 깊으며, 전문생산
체계로의 발전과정에서 과도기로서 농경 위주보다는 다양한 생계활동을 기반으로 삼아 계급사회로 이
행되는 과정으로 파악된다.