검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2018.04 구독 인증기관·개인회원 무료
        Stream of afterglow of an atmospheric pressure plasma can conveniently be used for large scale decontamination operations. In the present study, an afterglow dielectric-barrier discharge air plasma (ADDAP) was used to inactivate Escherichia coli O157:H7 as a model microorganism for studying the plasma inactivation effect. The plasma was generated at current levels in the range of 0.4 - 0.8 A. The power consumption of ADDAP generation system ranged 169.5 - 221.9 W with respect to the current intensity range. At this current level, the temperature observed in the treatment chamber remained less than 30℃. Regarding chemical composition of ADDAP in the treatment chamber, NOx species were predominantly generated. The levels of NOx species increased as the current intensity increases and the maximum NO and NO2, concentrations noted were 6 and 4 ppm, respectively, but that of CO was less than 1 ppm level at 0.8 A. Upon treating with the ADDAP generated at 0.4 - 0.8 A for 180 min, E. coli O157:H7 showed 1.24 – 2.71 log reductions. The inactivation patterns exhibited better fit to Weibull-tail model. The comparison of delta values indicated that superior inactivation effects were observed as the current intensity increased.