Radioactive waste (hereinafter referred to as mixed waste) containing hazardous substances (heavy metals, organic and inorganic waste liquids, asbestos, etc.) has been continuously generated from domestic nuclear power plants, nuclear facilities, and other industrial facilities, and heavy metals were released during the dismantlement of Kori Unit 1 and Wolseong Unit 1. Lead, cadmium, mercury, arsenic), asbestos, decontamination waste liquid (organic/inorganic waste liquid), etc. may be generated. Although hazardous waste related to the nuclear industry continues to be generated, only the regulation direction for hazardous substances is presented in the provisions related to hazardous substances in the delivery regulations for low and intermediate-level radioactive waste and the acceptance criteria for low and intermediate-level radioactive waste disposal facilities. In particular, because there is no clear definition of “hazardousness” and specific standards such as concentration and characteristics for classification of hazardous substances, as well as hazard removal procedures when the hazardousness of radioactive waste is confirmed, no hazardous substances have been delivered in Korea to date and many mixed wastes are stored at each generation facility or at the NPP. As a plan to improve delivery standards related to mixed waste is being prepared recently, it is believed that if the acceptance standards are revised accordingly, it will be possible to confirm the suitability for disposal of drums produced after the establishment of the acceptance standards in 2015. However, it is believed that securing disposal suitability for waste that was packed in 200L drums and compressed under super high pressure in the absence of specific technical standards and regulatory guidelines for the disposal of radioactive waste containing hazardous substances would still remain a difficult problem. In this report overseas acceptance standards related to hazardous waste were reviewed and a plan to secure the disposal suitability of 200 L drums compressed with of super high pressure was proposed.
Activated carbon (AC) is used for filtering organic and radioactive particles, in liquid and ventilation systems, respectively. Spent ACs (SACs) are stored till decaying to clearance level before disposal, but some SACs are found to contain C-14, a radioactive isotopes 5,730 years halflife, at a concentration greater than clearance level concentration, 1 Bq/g. However, without waste acceptance criteria (WAC) regarding SACs, SACs are not delivered for disposal at current situation. Therefore, this paper aims to perform a preliminary disposal safety examination to provide fundamental data to establish WAC regarding SACs SACs are inorganic ash composed mostly of carbon (~88%) with few other elements (S, H, O, etc.). Some of these SACs produced from NPPs are found to contain C-14 at concentration up to very-low level waste (VLLW) criteria, and few up to low-level waste (LLW) criteria. As SACs are in form of bead or pellets, dispersion may become a concern, thus requiring conditioning to be indispersible, and considering VLL soils can be disposed by packaging into soft-bags, VLL SACs can also be disposed in the same way, provided SACs are dried to meet free water requirement. But, further analysis is required to evaluate radioactive inventory before disposal. Disposability of SACs is examined based on domestic WAC’s requirement on physical and chemical characteristics. Firstly, particulate regulation would be satisfied, as commonly used ACs in filters are in size greater than 0.3 mm, which is greater than regulated particle size of 0.2 mm and below. Secondly, chelating content regulation would be satisfied, as SACs do not contain chelating chemicals. Also, cellulose, which is known to produce chelating agent (ISA), would be degraded and removed as ACs are produced by pyrolysis at 1,000°C, while thermal degradation of cellulose occurs around 350~600°C. Thirdly, ignitability regulation would be satisfied because as per 40 CFR 261.21, ignitable material is defined with ignition point below 60°C, but SACs has ignition point above 350°C. Lastly, gas generation regulation would be satisfied, as SACs being inorganic, they would be targeted for biological degradation, which is one of the main mechanism of gas generation. Therefore, SACs would be suitable to be disposed at domestic repositories, provided they are securely packaged. Further analysis would be required before disposal to determine detailed radioactive inventories and chemical contents, which also would be used to produce fundamental data to establish WAC.
Domestic waste acceptance criteria (WAC) require flowable or homogeneous wastes, such as spent resin, concentrated waste, and sludge, etc., to be solidified regardless of radiation level, to provide structural integrity to prevent collapse of repository, and prevent leaching. Therefore, verylow level (VLL) spent resin (SR) would also require to be solidified. However, such disposal would be too conservative, considering IAEA standards do not require robust containment and shielding of VLL wastes. To prevent unnecessary cost and exposure to workers, current WAC advisable to be amended, thus this paper aims to provide modified regulation based on reviewed engineering background of solidification requirement. According to NRC report, SR is classified as wet-solid waste, which is defined as a solid waste produced from liquid system, thus containing free-liquid within the waste. NRC requires liquid wastes to be solidified regardless of radiation level to prevent free liquid from being disposed, which could cause rapid release of radionuclides. Furthermore, considering class A waste does not require structural integrity, unlike class B and C wastes, dewatering would be an enough measure for solidification. This is supported by the cases of Palo Verde and Diablo Canyon nuclear power plants, whose wet-solid wastes, such as concentrated wastes and sludge, are disposed by packaging into steel boxes after dewatering or incineration. Therefore, dewatering VLL spent resin and packaging them into structural secure packaging could satisfy solidification goal. Another goal of solidification is to provide structural support, which was considered to prevent collapse of soil covers in landfills or trenches. However, providing structural support via solidification agent (ex. Cement) would be unnecessary in domestic 2nd phase repository. As the domestic 2nd phase repository is cementitious structure, which is backfilled with cement upon closure, the repository itself already has enough structural integrity to prevent collapse. Goldsim simulation was run to evaluate radiation impact by VLL SR, with and without solidification, by modelling solidified wastes with simple leaching, and unsolidified wastes with instant release. Both simulations showed negligible impact on radiation exposure, meaning that solidifying VLL SR to delay leaching would be irrational. Therefore, dewatering VLL SR and packaging it into a secure drum (ex. Steel drum) could achieve solidification goals described in NRC reports and provide enough safety to be disposed into domestic repositories. In future, the studied backgrounds in this paper should be considered to modify current WAC to achieve efficient waste management.
With the recent concern regarding cellulose enhancing radionuclide mobility upon its degradation to ISA, disposal of cellulosic wastes is being held off until the disposal safety is vindicated. Thus, a rational assessment should be conducted, applying an appropriate cellulose degradation model considering the disposal environment and cellulose degradation mechanisms. In this paper cellulose degradation mechanisms and the disposal environment are studied to propose the best-suitable cellulose degradation model for the domestic 1st phase repository. For the cellulose to readily degrade, the pH should be greater than 12.5. As in the case of SKB, 1BLA is excluded from the safety assessment because the pH of 1BLA remains below 12.5. Furthermore, despite cellulose degradation occurring, it does not always produce ISA. At low Ca2+ concentration, the ISA yield rate is around 25%, but at high Ca2+ concentration, the ISA yield rate increases up to 90%. Thus, for the cellulose to be a major concern, both pH and Ca2+ concentration conditions must be satisfied. To satisfy both conditions, the cement hydration must be in 2nd phase, when the porewater pH remains around 12.5 and a significant amount of Ca2+ ion is leaching out from the cement. However, according to the safety evaluation and domestic research, 2nd phase of cement hydration for silo concrete would achieve a pH of around 12.4, dissatisfying cellulose degradation condition like in 1BLA. Thus, cellulose degradation would be unlikely to occur in the domestic 1st phase repository. To derive waste acceptance criteria, a quantitative evaluation should be conducted, conservatively assuming cellulose is degraded. To conduct a safety evaluation, an appropriate degradation model should be applied to determine the degradation rate of cellulose. According to overseas research, despite the mid-chain scission being yet to be seen in the experiments, the degradation model considering mid-chain scission is applied, resulting in an almost 100% degradation rate. The model is selected because the repositories are backfilled with cement, achieving a pH greater than 13, so extensive degradation is reasonably conservative. However, under the domestic disposal condition, where cellulose degradation is unlikely to occur, applying such model would be excessively conservative. Thus, the peeling and stopping model derived by Van Loon and Haas, which suggests 10~25% degradation rate, is reasonably conservative. Based on this model, cellulose would not be a major concern in the domestic 1st phase repository. In the future, this study could be used as fundamental data for planning waste acceptance criteria.
Concerns with colloids, dispersed 1~1,000 nm particles, in the LILW repository are being raised due to their potential to enhance radionuclide release. Due to their large surface areas, radionuclides may sorb onto mobile colloids, and drift along with the colloidal transport, instead of being sorbed onto immobile surfaces. To prevent adverse implications on the safety of the repository, the colloidal impact must be evaluated. In this paper, colloid analysis done by SKB is studied, and factors to be considered for the safety assessment of colloids are analyzed. First, the colloid generation mechanism should be analyzed. In a cementitious repository, due to a highly alkaline environment, colloid formation from wastes may be promoted by the decomposition of organic materials, dissolution of inorganic materials, and corrosion of metals. Radiolysis is excluded when radionuclide inventory is moderate, as in the case of SKB. Second, colloid stability should be evaluated to determine whether colloids remain in dispersion. Stable colloids acquire electric charges, allowing particles to continuously repel one another to prevent coagulation. Thus, stability depends on the pH and ionic condition of the surroundings, and colloid composition. For instance, under a highly alkaline cementitious environment, colloids tend to be negatively charged, repelling each other, but Ca2+ ion from cement, acting as a coagulant, makes colloid unstable, promoting sedimentation. As in the case of SKB, the colloidal impact is assumed negligible in the silo, BMA, and BTF due to their extensive cement contents, but for BLA, with relatively less cement source, the colloidal impact is a potential concern. Third, colloid mobility should be assessed to appraise radionuclide release via colloid transport. The mobility depends on the density and size of colloids, and flow velocity to commence motion. As a part of the assessment, the filtration effect should also be included, which depends on pore size and structure. As in the case of SKB, due to static hydraulic conditions and engineering barriers, acting as efficient filters, colloidal transport is expected to be unlikely. In the domestic underground repository, the highly alkaline environment would lead to colloid formation, but due to high Ca2+ concentration and low flow velocity, colloids would achieve low stability and mobility, thus colloidal impact would be a minor concern. In the future, with further detailed analysis of each factor, waste composition, and disposal condition, reliable data for safety evaluation could be generated to be used as fundamental data for planning waste acceptance criteria.