검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 13

        10.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        Manganese () is a trace element that is essential for normal physiology, and is predominantly obtained from food. Several lines of evidence, however, demonstrated that overexposure to exerts serious neurotoxicity, immunotoxicity and developmental toxicity, particularly in male. The present study aimed to evaluate the effect of 0, 1.0, 3.3, and 10 mg/kg/day doses of on the reproductive organs in the immature female rats. Rats (PND 22; S.D. strain) were exposed to () dissolved in drinking water for 2 weeks. The animals were sacrificed on PND 35, then the tissues were immediately removed and weighed. Histological studies were performed using the uteri tissue samples. Serum LH and FSH levels were measured with the specific ELISA kits. Body weights of the experimental group animals were not significantly different from those of control group animals. However, ovarian tissue weights in 1 mg and 3.3 mg dose groups were significantly lower than those of control animals (p<0.05 and p<0.01, respectively). Uterine tissue weights of 3.3 mg dose groups were significantly lower than those of control animals (p<0.01), while the 1 mg dose and 10 mg dose failed to induce any change in uterine weight. Similarly, only 3.3 mg dose could induce the significant decrease in the oviduct weight compared to the control group (p<0.05). Non-reproductive tissues such as adrenal and kidney failed to respond to all doses of exposure. The uterine histology revealed that the exposure could affect the myometrial cell proliferation particularly in 3.3 mg dose and 10mg dose group. Serum FSH levels were significantly decreased in 1mg dose and 10 mg groups (p<0.05 and p<0.01, respectively). In contrast, treatment with 1 mg dose induced a significant increment of serum LH level (p<0.05). The present study demonstrated that exposure is capable of inducing abnormal development of reproductive tissues, at least to some extent, and altered gonadotropin secretions in immature female rats. Combined with the well-defined actions of this metal on GnRH and prolactin secretion, one can suggest the might be a potential environmental mediator which is involved in the female pubertal process.