In response to a regulatory mandate, all nuclear licensees are obligated to establish an information system that can provide essential information in the event of a radiation emergency by connecting the monitoring data of the Safety Parameter Display System (SPDS) or equivalent system to the Korea Institute of Nuclear Safety (KINS). Responding to this responsibility, the Korea Atomic Energy Research Institute (KAERI) has established the Safety Information Transmission System (SITS), which enables the collection and real-time monitoring of safety information. The KAERI monitors and collects safety information, which includes data from the HANARO Operation Work Station (OWS) and the HANARO & HANARO Fuel Fabrication Plant (HFFP) Radioactivity Monitoring System (RMS), and the Environmental Radiation Monitoring System (ERMS) & meteorological data. Currently, the transmission of this safety information to the AtomCARE server of the KINS takes place via the SITS server located in the Emergency Operations Facility (EOF). However, the multi-path of transmission through SITS has caused problems such as an increase in data transmission interruptions and errors, as well as delays in identifying the cause and implementing system recovery measures. To address these issues, a new VPN is currently being constructed on the servers of nuclear facilities that generate and manage safety information to establish a direct transmission system of safety information from each nuclear facility to the AtomCARE server. The establishment of a direct transmission system that eliminates unnecessary transit steps is expected to result in stable information transmission and minimize the frequency of data transmission interruptions. As of the improvement progress, a security review was conducted in the second and third quarters of 2022 to evaluate the security of newly introduced VPNs to the nuclear facility server, and based on the results of the review, security measures were strengthened. In the fourth quarter of 2022, the development of a direct transmission system for safety information began, and it is scheduled to be completed by the fourth quarter of 2023. The project includes the construction of the transmission system, system inspection, and comprehensive data stability testing. Afterward, the existing SITS located in the EOF will be renamed as the Safety Information Display System (SIDS), and there are plans to remove any unused servers and VPNs.
Recently, an international issue due to the discharge of contaminated water from the Fukushima has been highlighted. Since the Fukushima nuclear power plant accident in japan, marine environmental radioactivity survey has been strengthened with increased sampling frequency and range for seawater in territorial waters. And a stationary underwater radiation monitoring system including floating equipment-based system such as oceanographic buoys, tidal stations have been deployed on-site to detect abnormal radiological events. However, stationary monitoring systems may be insufficient for the early detection of abnormal radioactivity over a wide area, since it is a passive way of waiting for radioactive materials to spread in the ocean. So, our team developed a ship-mounted seawater gammaray monitoring system that can be operated remotely and in real time. In this study, it includes a detailed description of the design, installation, monitoring method, and operation of the system.