검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        In the event of a radiological emergency at a nuclear facility, the exchange of information on the accident situation is very important in the response process. For this reason, international organizations such as the IAEA and the EU operate systems to exchange information in the event of a radiological emergency. In south korea, the emergency response information exchange system (ERIX) developed by KINS is operated for use by the national radiological emergency response organization. The ERIX enables the exchange of emergency response information between organizations such as the government, nuclear operators, local authorities, KINS and KIRAMS. The KAERI has developed the KAERI emergency response information exchange system (KAERIX) for the exchange of accident information and emergency response information between the emergency response organizations of the KAERI in the event of a radiological emergency. This system is web-based using HTML, runs on internal network and is only available to KAERI staff. Recently, as the need for optimizing and upgrading KAERIX has arisen, improvements have been derived. The main improvement is optimizing KAERIX for Microsoft Edge to minimize errors. At present, it is optimized for Internet Explorer, but optimizing it for Microsoft Edge mode has become essential due to Microsoft discontinuing support for Internet Explorer. Another major improvement involves adding functions in ERIX to KAERIX, such as displaying the deletion/ correction status of input information and providing notifications for important information registration. Ultimately, KAERIX will be upgraded and optimized in 2024, reflecting improvements.
        2.
        2023.11 구독 인증기관·개인회원 무료
        The nuclear licensee must ensure that the nuclear or radiological emergency preparedness and response organization is explicitly defined and staffed with adequate numbers of competent and assessed personnel for their roles. This paper describes the responsibilities of medical and support personnel for the medical action of casualties in the event of a radiological emergency at the KAERI. Currently, there is one medical personnel (nurse) in KAERI, and a total of eight medical support personnel are designated for medical response in the event of a radiological emergency. These medical support personnel are designated as one or two of the on-site response personnel at each nuclear facility, operating as a dedicated team of A, B (4 people each). In the event of a radiological emergency, not all medical support personnel are mobilized, but members of the dedicated medical team, which includes the medical support personnel of the nuclear facility where the accident has occurred, are summoned. Medical and support personnel will first gather in the onsite operational support center (OSC)/technical support center (TSC) to prepare and stand by for the medical response to injured when a radiological emergency is declared. They should take radiation protective measures, such as wearing radiation protective clothing and dosimeters, before entering the onsite of a radiological emergency, because injuries sustained during a radiological emergency may be associated with radioactive contamination. In the event of an injury, direct medical treatment such as checking the patient’s vitals, first aid, and decontamination will be carried out by medical personnel, while support personnel are mainly responsible for contacting the transfer hospital, reporting the patient’s condition, accompanying the ambulance, filling out the emergency medical treatment record, and supporting medical personnel. In order to respond appropriately to the occurrence of injuries, we regularly conduct emergency medical supplies education and medical training for medical support personnel to strengthen their capabilities.
        3.
        2023.05 구독 인증기관·개인회원 무료
        In response to a regulatory mandate, all nuclear licensees are obligated to establish an information system that can provide essential information in the event of a radiation emergency by connecting the monitoring data of the Safety Parameter Display System (SPDS) or equivalent system to the Korea Institute of Nuclear Safety (KINS). Responding to this responsibility, the Korea Atomic Energy Research Institute (KAERI) has established the Safety Information Transmission System (SITS), which enables the collection and real-time monitoring of safety information. The KAERI monitors and collects safety information, which includes data from the HANARO Operation Work Station (OWS) and the HANARO & HANARO Fuel Fabrication Plant (HFFP) Radioactivity Monitoring System (RMS), and the Environmental Radiation Monitoring System (ERMS) & meteorological data. Currently, the transmission of this safety information to the AtomCARE server of the KINS takes place via the SITS server located in the Emergency Operations Facility (EOF). However, the multi-path of transmission through SITS has caused problems such as an increase in data transmission interruptions and errors, as well as delays in identifying the cause and implementing system recovery measures. To address these issues, a new VPN is currently being constructed on the servers of nuclear facilities that generate and manage safety information to establish a direct transmission system of safety information from each nuclear facility to the AtomCARE server. The establishment of a direct transmission system that eliminates unnecessary transit steps is expected to result in stable information transmission and minimize the frequency of data transmission interruptions. As of the improvement progress, a security review was conducted in the second and third quarters of 2022 to evaluate the security of newly introduced VPNs to the nuclear facility server, and based on the results of the review, security measures were strengthened. In the fourth quarter of 2022, the development of a direct transmission system for safety information began, and it is scheduled to be completed by the fourth quarter of 2023. The project includes the construction of the transmission system, system inspection, and comprehensive data stability testing. Afterward, the existing SITS located in the EOF will be renamed as the Safety Information Display System (SIDS), and there are plans to remove any unused servers and VPNs.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Cs-137, a radioactive isotope of caesium, is a commonly occurring fission product that is generated during the nuclear fission of U-235 and other fissionable isotopes in both nuclear reactors and weapons. Due to its long half-life of about 30 years and propensity to accumulate in sediments and marine organisms, Cs-137 is considered a major radionuclide for environmental radioactivity monitoring. In April 2021, as the Japanese government decided to discharge Fukushima contaminated water into the sea, the monitoring of marine radioactivity in South Korea has become increasingly significant. In this study, as an initial step towards establishing a standardized procedure for analyzing radioactive caesium in seawater, the radioactivity of Cs-137 was analyzed on a 2 L of seawater spiked with 10 Bq of Cs-137 standard solution supplied by KRISS. The seawater was collected from Im-nang Beach, situated at a distance of approximately 2 kilometers from DIRAMS. The radioactivity of Cs-137 in seawater was determined according to the improved AMP procedure presented by M.Aoyama in 2000. The seawater was pretreated using Ammonium Phosphomolybdate (AMP) coprecipitation, which has a high selectivity for caesium (Kd = ~5500), and the activity of Cs-137 was determined by gammaspectroscopy and subsequently corrected via the weight yield. The weight yield of the dried AMP/Cs compound was more than 93%. For the gamma-spectroscopy analysis, the AMP/Cs compound was dissolved in a cylindrical U8 beaker with NaOH to ensure that its shape and volume were consistent with the CRM (KRISS, 221U890-1) used to calibrate the detector. The dissolved compound was then positioned directly onto the detector housing and subjected to a measurement duration of 80,000 seconds utilizing a p-type HPGe (Ortec, GEM60) with a relative efficiency of 54%. The activity of Cs-137 was determined to be 10.81 Bq, confirming the reproducibility of the AMP coprecipitation and weight yield methods. The present experiment was carried out using a 2 L sample, but a large volume of seawater would be required to achieve a sufficient minimum detectable activity (MDA) for Cs-137 in natural seawater. Thus, a standardized procedure for analysis of radioactive caesium in natural seawater will be established through the analysis of a large volume of seawater in future studies.