We investigate dynamical evolution of globular clusters with multi-mass component under the Galactic tidal field. We compare the results with our previous work which considered the cases of single-mass component m the globular clusters. We find the followings: 1) The general evolutions are similar to the cases of single-mass component. 2) There is no evidence for dependence on the orbital phase of the cluster as in the case of single-mass component. 3) The escape rate in multi-mass models is larger than that in the single-mass models. 4) The mass-function depends on radius more sensitively in anisotropic models than in isotropic models.
We investigate the dynamical evolution of globular clusters under the diffusion, the Galactic tide, and the presence of halo black holes. We compare the results with our previous work which considers the diffusion processes and the Galactic tide. We find the followings: (1) The black holes contribute the expansion of the outer part of the cluster. (2) There is no evidence for dependence on the orbital phase of the cluster as in our previous work. (3) The models of linear and Gaussian velocity distribution for the halo black holes do not show any significant differences in all cases. (4) The perturbation of black holes reduces the number of stars in lower energy regions. (5) There is a significant number of stars with retrograde orbits beyond the cutoff radius especially in the case of diffusion and the perturbation of black holes.
Inweolbyeo is a japonica rice (Oryza sativa L.) variety developed by Unbong Substation, National Honam Agricultural Experiment Station, RDA in 1998. It was selected from progenies from a cross between Fukei 127 and Unbongbyeo by pedigree breeding method.