We investigate the properties of AGB and post-AGB (PAGB) stars, planetary nebulae, and young stellar objects (YSOs) in our Galaxy through an analysis of observational data covering visual and infrared (IR) wavelengths. Utilizing datasets from IRAS, 2MASS, AllWISE, Gaia DR3, and the SIMBAD object database, we perform an in-depth comparison between observational data and theoretical models. For this comparison, we present various color-magnitude diagrams (CMDs) in visual and IR bands, as well as IR two-color diagrams (2CDs). Our results demonstrate that the CMDs, incorporating the latest distance and extinction data from Gaia DR3 for a majority of sample stars, are effective in distinguishing different classes of stars. To improve the precision of our analysis, we apply theoretical radiative transfer models for dust shells around AGB and PAGB stars. A thorough comparison of the theoretical models with observations across various IR 2CDs and CMDs shows a significant agreement. We find that AGB and PAGB stars are among the brightest classes in visual and IR bands. Furthermore, most YSOs are clearly distinguishable from AGB stars on various IR CMDs, exhibiting fainter absolute magnitudes in IR bands.
We investigate infrared properties of OGLE4 Mira variables in our Galaxy. For each object, we cross-identify the AllWISE, 2MASS, Gaia, and IRAS counterparts. We present various IR two-color diagrams (2CDs) and period-magnitude and period-color relations for the Mira variables. Generally, the Mira variables with longer periods are brighter in the IR fluxes and redder in the IR colors. In this work, we also revise and update the previous catalog of AGB stars in our Galaxy using the new sample of OGLE4 Mira variables. Now, we present a new catalog of 74,093 (64,609 O-rich and 9,484 C-rich) AGB stars in our Galaxy. A group of 23,314 (19,196 O-rich and 4,118 C-rich) AGB stars are identified based on the IRAS PSC and another group of 50,779 (45,413 O-rich and 5,366 C-rich) AGB stars are identified based on the AllWISE source catalog. For all of the AGB stars, we cross-identify the IRAS, AKARI, MSX, AllWISE, 2MASS, OGLE4, Gaia, and AAVSO counterparts and present various infrared 2CDs. Comparing the observations with the theory, we find that basic theoretical dust shell models can account for the IR observations fairly well for most of the AGB stars.
We present various infrared two-color diagrams (2CDs) using WISE data for asymptotic giant branch (AGB) stars and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use the sample of 5036 AGB stars, 660 post-AGB stars, and 2748 PNe in our Galaxy. For each object, we cross-identify the IRAS, AKARI, WISE, and 2MASS counterparts. To investigate the spectral evolution from AGB stars to PNe, we compare the theoretical model tracks of AGB stars and post-AGB stars with the observations on the IR 2CDs. We find that the theoretical dust shell model tracks can roughly explain the observations of AGB stars, post-AGB stars, and PNe on the various IR 2CDs. WISE data are useful in studying the evolution of AGB stars and PNe, especially for dim objects. We find that most observed color indices generally increase during the evolution from AGB stars to PNe. We also find that Fe0.9Mg0.1O dust is useful to fit the observed WISE W3-W4 colors for O-rich AGB stars with thin dust shells.
We investigate optical properties of amorphous alumina (Al2O3) dust grains in the envelopes around O-rich asymptotic giant branch (AGB) stars using laboratory measured optical data. We derive the optical constants of amorphous alumina over a wide wavelength range that satisfy the Kramers- Kronig relation and reproduce the laboratory data. Using the amorphous alumina and silicate dust, we compare the radiative transfer model results with the observed spectral energy distributions. Comparing the theoretical models with observations on various IR two-color diagrams for a large sample of O-rich AGB stars, we find that the amorphous alumina dust (about 10-40%) mixed with amorphous silicate better models the observed points for the O-rich AGB stars with thin dust envelopes.
The main site of dust formation is believed to be the cool envelopes around AGB stars. Nearly all AGB stars can be identified as long-period variables (LPVs) with large amplitude pulsation. Shock waves produce by the strong pulsation and radiation pressure on newly formed dust grains drive dusty stellar winds with high mass-loss rates. IR observations of AGB stars identify various dust species in different physical conditions. Radio observations of gas phase materials are helpful to understand the overall properties of the stellar winds. In this paper, we review (i) classification of AGB stars; (ii) IR two-color diagrams of AGB stars; (iii) pulsation of AGB stars; (iv) dust around AGB stars including dusty stellar winds; (v) dust envelopes around AGB stars; (vi) mass-loss and evolution of AGB stars; and (vii) contribution of AGB dust to galactic environments. We discuss various observational evidences and their theoretical interpretations.
A silicate carbon star is a carbon star which shows circumstellar silicate dust features. We col- lect a sample of 44 silicate carbon stars from the literature and investigate the validity of the classification. For some objects, it is uncertain whether the central star is a carbon star. We confirm that 29 objects are verified silicate carbon stars. We classify the confirmed objects into three subclasses based on the evolution phase of the central star. To investigate the effect of the chemical transition phase from O to C, we use the radiative transfer models for the detached silicate dust shells. The spectral energy distributions and the infrared two-color diagrams of the silicate carbon stars are compared with the theoretical model results. For the chemical transition model without considering the effect of a disk, we find that the life time of the silicate feature is about 50 to 400 years depending on the initial dust optical depth.
We compare mass-loss rates of OH/IR stars obtained from radio observations with those derived from the dust radiative transfer models and IR observations. We collect radio observational data of OH maser and CO line emission sources for a sample of 1533 OH/IR stars listed in Suh & Kwon (2011). For 1259 OH maser, 76 CO(J=1-0), and 55 CO(J=2-1) emission sources, we compile data of the expansion velocity and mass-loss rate. We use a dust radiative transfer model for the dust shell to calculate the mass-loss rate as well as the IR color indices. The observed mass-loss rates are in the range predicted by the theoretical dust shell models corresponding to M = 10-8M⊙/yr - 10-4M⊙/yr. We find that the dust model using a simple mixture of amorphous silicate and amorphous Al2O3 (20% by mass) grains can explain the observations fairly well. The results indicate that the dust radiative transfer models for IR observations generally agree with the radio observations. For high mass-loss rate OH/IR stars, the mass-loss rates obtained from radio observations are underestimated compared to the mass-loss rates derived from the dust shell models. This could be because photon momentum transfer to the gas shell is not possible for the physical condition of high mass-loss rates. Alternative explanations could be the e®ects of di®erent dust-to-gas ratios and/or a superwind.
We investigate the properties of OH, SiO, and H2O maser emission in O-rich AGB stars. We use a sample of 3373 objects, which is an updated version of the list of O-rich AGB stars presented in Suh & Kwon (2011). We divide the 3373 O-rich AGB stars into four different groups based on the maser emission: OH maser sources (1533), SiO sources (1627), H2O sources (452), and sources with no maser (610). To understand the nature of the maser sources, we present various infrared two-color diagrams (2CDs) using IRAS, 2MASS, and AKARI data. For each group, we compare the positions on various infrared 2CDs with theoretical models. We ¯nd that the OH maser sources generally show larger color indices and larger dust optical depths than SiO or H2O sources. We suggest that the differences of the color indices for different maser sources are due to different mass-loss rates and dust formation processes.
We model dust around Herbig Ae/Be stars using a radiative transfer model for multiple isothermal circumstellar dust shells to reproduce the multiple broad peaks in their spectral energy distributions (SEDs). Using the opacity functions for various types of dust grains at different temperatures, we calculate the radiative transfer model SEDs for multiple dust shells. For eight sample stars, we compare the model results with the observed SEDs including the Infrared Space Observatory (ISO) and AKARI data. We present model parameters for the best fit model SEDs that would be helpful to understand the overall structure of dust envelopes around Herbig Ae/Be stars. We find that at least four separate dust components are required to reproduce the observed SEDs. For all the sample stars, two innermost dust components (a hot component of 1000-1500 K and a warm component of 300-600 K) with amorphous silicate and carbon grains are needed. Crystalline dust grains (corundum, forsterite, olivine, and water ice) are needed for some objects. Some crystalline dust grains exist in cold regions as well as in hot inner shells.
We investigate the spectral energy distributions (SEDs) of low mass-loss rate O-rich asymptotic giant branch (AGB) stars using the infrared observational data including the Infrared Space Observatory (ISO) data. Comparing the results of detailed radiative transfer model calculations with observations, we find that the dust formation temperature is much lower than 1000 K for standard dust shell models. We find that the superwind model with a density-enhanced region can be a possible alternative dust shell model for LMOA stars.
To reproduce the spectral energy distributions (SEDs) of young stellar objects (YSOs), we perform radiative transfer model calculations for the circumstellar dust disks with various shapes and many dust species. For eight sample objects of T Tauri and Herbig Ae/Be stars, we compare the theoretical model SEDs with the observed SEDs described by the infrared space observatory and Spitzer space telescope spectral data. We use the model, CGPLUS, for a passive irradiated circumstellar dust disk with an inner hole and an inner rim for the eight sample YSOs. We present model parameters for the dust disk, which reproduce the observed SEDs. We find that the model requires a higher mass, luminosity, and temperature for the central star for the Herbig Ae/Be stars than those for the T Tauri stars. Generally, the outer radius, total mass, thickness, and rim height of the theoretical dust disk for the Herbig Ae/Be stars are larger than those for the T Tauri stars.