In recent years, there has been growing interest in the potential applications of carbon-based non-metallic catalysts in various fields, such as electrochemical energy storage, electrocatalysis, thermal catalysis, and photocatalysis, owing to their unique physical and chemical properties. Modifying carbon catalyst surfaces or incorporating non-metallic heteroatoms, such as nitrogen (N), phosphorus (P), boron (B), and sulfur (S), into the carbon structure has emerged as a promising approach to improve the catalytic performance. This method enables the adjustment of the electronic structure of the carbon catalyst's surface, leading to the formation of new active sites or the reduction of side reactions, ultimately enhancing the catalyst's performance. Here, the preparation methods for doped non-metallic heteroatom carbon catalysts have been systematically explored, encompassing techniques, such as impregnation, pyrolysis, chemical vapor deposition (CVD), and templating. Finally, the existing challenges in the application of non-metallic atomic catalysts have been discussed, insights into potential future development opportunities and new preparation methods of carbon catalysts in the future have been offered.
High-quality diamond films have attracted extensive attentions due to their excellent optical and electrical properties. However, several issues, such as random orientation, stress accumulation, and slow growth rate, severely limit its applications. In this paper, high-quality polycrystalline diamond films with highly ordered (100) orientation were prepared by microwave plasma chemical vapor deposition. The effects of growth parameters on the microstructure, quality and residual stress of diamond films were investigated. Experimental results indicate that relatively high temperature at low methane concentration will promote the formation of (100) oriented grains with a low compressive stress. Optimized growth parameters, a methane concentration of 2% along with a pressure of 250 Torr and temperature at 1050 ℃, were used to acquire high growth rate of 7.9 μm/h and narrow full width at half maximum of Raman peak of 5.5 cm− 1 revealing a high crystal quality. It demonstrates a promising method for rapid growth of high-quality polycrystalline diamond films with (100) orientation, which is vital for improving the diamond related applications at low cost.