검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.11 구독 인증기관·개인회원 무료
        Various types of radioactive liquid and solid wastes are generated during the operation and decommissioning of nuclear power plants. To remove radionuclides Co-60, Cs-137 etc. from a liquid waste, the ion-exchange process based on organic resins has been commonly used for the operation of nuclear facilities. Due to the considerations for the final disposal of process endproduct, other treatment methods such as adsorption, precipitation using some inorganic materials have been suggested to prepare for large amounts of waste during decommissioning. This study evaluated sintering characteristics for radioactive precipitates generated during the liquid waste treatment process. The volume reduction efficiency and compressive strength of sintered pellets were the major parameters for the evaluation. Major components of a simulated precipitate were some coagulated (oxy) hydroxides containing light elements, such as Si, Al, Mg, Ca, and zeolite particles. Green pellets compressed to around 100 MPa were heated at a range of 750~850°C to synthesize sintered pellets. It was observed that the volume reduction percentages were higher than 50% in the appropriate sintering conditions. The volume reduction was caused by the reduction of void space between particles, which is an evidence of partial glassification and ceramization of the precipitates. This result can also be attributed to conversion reactions of zeolite particles into other minerals. The compressive strength ranged from 6 to 19 MPa. These results also showed a significant correlation with the volume reduction of sintered body. Although our lab-scale experiments showed many benefits of sintering for the precipitates, optimized conditions are needed for large-scale practical applications. Evaluation of sintering characteristics as a function of pellet size and further testing will be conducted in the future.
        2.
        2022.10 구독 인증기관·개인회원 무료
        This study evaluated the synthesis of optimal materials for high efficiency adsorption and removal characteristics of Cs-137 for radioactive contaminated water, and considered thermal treatment methods to stabilize the spent adsorbent generated after treatment. We synthesized a composite adsorbent with a combination of impregnating metal ferrocyanide that improves the selectivity of Cs adsorption with zeolite capable of removing Cs as a support. The Cs removal efficiency of the composite adsorbent was evaluated, and the stability change of Cs according to the high-temperature sintering was evaluated as a stabilization method of the spent adsorbent. The metal ferrocyanide content of the adsorbent was in the range of 11.8~36.0%. The adsorption experiments were performed using a simulated liquid waste to have a total Cs concentration of 1 mg/L while containing a trace amount of Cs-137, and then gamma radioactivity was analyzed. In order to evaluate the stabilization of the spent adsorbent, heat treatment was performed in the range of 500~1,100°C, and the volatilization rate of Cs during heat treatment and the leaching rate of Cs after heat treatment were compared. In the adsorption experiment, the Cs removal efficiency was higher than 99%, regardless of the amount of metal ferrocyanide in the composite adsorbent. In the sintering experiment on the spent adsorbent, it was confirmed that there was no volatilization of Cs up to 850°C, and then the volatilization rate increased as the heating temperature increased. On the other hand, the leaching rate of Cs in the sintered adsorbent tends to significantly decrease as the heating temperature increases, so that Cs can be stabilized in the sintered body. In addition, as the content of metal ferrocyanide increases, the volatilization rate of Cs rapidly increases, indicating that the unstable metal ferrocyanide in the adsorbent may adversely affect the removal of Cs as well as the thermal treatment stability.
        3.
        2022.10 구독 인증기관·개인회원 무료
        Radioactive waste generated in large quantities from NPP decommissioning has various physicochemical and radiological characteristics, and therefore treatment technologies suitable for those characteristics should be developed. Radioactively contaminated concrete waste is one of major decommissioning wastes. The disposal cost of radioactive concrete waste is considerable portion for the total budget of NPP decommissioning. In this study, we developed an integrated technology with thermomechanical and chemical methods for volume reduction of concrete waste and stabilization of secondary waste. The unit devices for the treatment process were also studied at bench-scale tests. The volume of radioactive concrete waste was effectively reduced by separating clean aggregate from the concrete. The separated aggregate satisfied the clearance criteria in the test using radionuclides. The treatment of secondary waste from the chemical separation step was optimally designed, and the stabilization method was found for the waste form to meet the final disposal criteria in the repository site. The final volume reduction rates of 56.4~75.4% were possible according to the application scenario of our processes under simulated conditions. The commercial-scale system designs for the thermomechanical and chemical processes were completed. Also, it was found that the disposal cost for the contaminated concrete waste at domestic NPP could be reduced by more than 20 billion won per each unit. Therefore, it is expected that the application of this technology will improve the utilization of the radioactive waste disposal space and significantly reduce the waste disposal cost.
        5.
        2019.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A teaching manual was developed to incorporate the creative problem solving process into a fashion marking course. Students’ creativity, problem solving, critical thinking, and analytical thinking are promoted by applying the creative problem solving process systematically to solve authentic business problems experienced by local apparel business owners. This teaching manual is based on the FourSight Model that consists of Clarify, Ideate, Develop, and Implement. Various tools promoting divergent thinking are also utilized in the process. A local fashion business is invited as a problem owner and four resource groups are formed with students based on the results of the Kirton Adaption Innovation Inventory. Each resource group consists of 6-8 students. The creative problem solving process is implemented into a classroom setting as four 75-minutes sessions that are held twice a week for two consecutive weeks. The local fashion business owner will be in presence during the first (Clarify) and last (Implement) sessions. The instructor facilitator meets with the problem owner outside the classroom three times including pre-session client interview, after the second (Ideate) session, and before the third (Develop) session. This modified CPS manual for fashion marketing and merchandising courses provides practical guidelines to work with local fashion businesses while providing students with learning opportunities of the creative problem solving process.
        4,000원
        6.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A consumer is an individual entity with various motivations. This study is intended to incorporate a hierarchical structure of motivation to understand self-determined motivation for purchasing secondhand merchandise at thrift stores. A conceptual model adopted from Cadwallader et al. (2010)’s comprehensive model of motivation used in a marketing context was developed to investigate motivational process in secondhand merchandise shopping. The conceptual model includes the three levels of motivational structure–the global, contextual (environmental concern and frugality), and situational motivation. A series of the causal relationships among the three levels of self-determined motivations and buying intention to shop at thrift stores were hypothesized. A total of 219 respondents from two different northeastern state universities in the U.S. completed a self-administered survey. The results indicated that secondhand merchandise shopping is well explained in the hierarchical structure of self-determined motivation where the global motivation had a positive impact on the contextual motivations regarding environmental concern and frugality. Of the two contextual motivations, only environmental concern had a positive impact on situational motivation for shopping at thrift stores. Finally, the situational motivation positively influenced the intention to shop at thrift stores. The results of this model suggest that the hierarchical structure of self-determined motivation would be a very useful framework to understand consumer behavior for apparel shopping. Also, further research can be done to identify other contextual motivational factors to understand consumer motivation for shopping at thrift stores.
        4,500원