Extracellular vesicles (EVs) are nanovesicles that carry bioactive cargoes of proteins, lipids, mRNAs, and miRNAs between living cells. Their role in cellular communication has gained the attention of several research reports globally in the last decade. EVs are critically involved in sperm functions, oocyte functions, fertilization, embryonic development, and pregnancy. The review summarizes the state-of-theart of EVs research in the diagnostic and therapeutic (theranostic) potentials of the EVs during the pregnancy that might provide a solution for gestational disturbances such as implantation failure, maternal health problems, gestational diabetes, and preeclampsia. EVs can be found in all biological fluids of the fetus and the mother and would provide a non-invasive and excellent tool for diagnostic purposes. Moreover, we provide the current efforts in manufacturing and designing targeted therapeutics using synthetic and semi-synthetic nanovesicles mimicking the natural EVs for efficient drug delivery during pregnancy.
This experiment was conducted to analyse the effects of flavone supplementation on the preimplantation development of in-vitro produced porcine embryos. During in-vitro development, immature oocytes and early embryos were exposed to different concentrations of flavone (0, 1μM, 25μM, 50 μM, and 100 μM respectively). Results showed that 100 μM of flavone significantly reduced the intracellular ROS levels of oocytes accompanied with a significant rise in GSH level. In parthenogenesis, no significant change was observed in the cleavage rates whether flavone was supplemented in IVM or IVC media. In IVM supplemented group, the blastocyst development rate was significantly enhanced by 1 μM concentration than other groups (51.5% vs. 41.3%, 44.0%, 36.3%, 31.7%; P<0.05) respectively. However, in IVC group 1 μM concentration significantly improved the blastocysts production than 50 μM and control groups (50.0% vs. 40.5%, 38.0%; P<0.05) respectively. Following nuclear transfer, the cleavage rate of IVM group was significantly more in 1 μM than 50 μM and 100 μM groups (92.9% vs. 89.7%, 87.8%; P<0.05), followed by similar pattern of cloned blastocysts production being significantly higher in 1 μM group than 50 μM, 100 μM and control groups (16.8% vs. 9.0%, 7.1%, 12.8%; P<0.05) respectively. In IVC group, 1 μM concentration resulted in significantly higher cleavage rate than 25 μM and 50 μM groups (91.7% vs. 87.8%, 88.8%; P<0.05) respectively. However, the blastocysts production was significantly higher in 100 μM group than others (26.2% vs. 13.6%, 14.0%, 18.2%; P<0.05) respectively. The optimal concentrations of flavone significantly enhanced the percentages of ICM:TE than control group (43.8% vs. 37.6%; P<0.05) accompanied with significantly higher expression levels of reprogramming related genes. In conclusion, the optimal concentrations of 1 μM during IVM and 100 μM during IVC can significantly improve the production of porcine in-vitro embryos.