In order to identify key nations and bird species of conservation concern we described multinational collaborations as defined using network analysis linked by birds that are found in all nations in the network. We used network analysis to assess the patterns in bird occurrence for 10,422 bird inventories from 244 countries and territories. Nations that are important in multinational collaborations for bird conservation were assessed using the centrality measures, closeness and betweenness centrality. Countries important for the multinational collaboration of bird conservation were examined based on their centrality measures, which included closeness and betweenness centralities. Comparatively, the co-occurrence network was divided into four groups that reveal different biogeographical structures. A group with higher closeness centrality included countries in southern Africa and had the potential to affect species in many other countries. Birds in countries in Asia, Australia and the South Pacific that are important to the cohesiveness of the global network had a higher score of betweenness centrality. Countries that had higher numbers of bird species and more extensively distributed bird species had higher centrality scores; in these countries, birds may act as excellent indicators of trends in the co-occurrence bird network. For effective bird conservation in the world, much stronger coordination among countries is required. Bird co-occurrence patterns can provide a suitable and powerful framework for understanding the complexity of co-occurrence patterns and consequences for multinational collaborations on bird conservation.
The recent trend in modern systems development can be characterized by the increasing complexity in terms of both the functionality and HW/SW scale that seems to be accelerated by the growing user requirements and the rapid advancement of technology. Among the issues of complexity, the one related to systems safety has attracted great deal of attention lately in the development of the products ranging from mass-transportation systems to defence weapon systems. As such, the incorporation of safety requirements in systems development is becoming more important. Note, however, that since such safety-critical systems are usually complex to develop, a lot of organizations and thus, engineers should participate in the development. In general, there seems to be a variety of differences in both the breadth and depth of the technical background they own. To address the problems, at first this paper presents an effective design process for safety-critical systems, which is intended to meet both the systems design and safety requirements. The result is then advanced to obtain the models utilizing the systems modeling language (SysML) that is a de facto industry standard. The use of SysML can facilitate the construction of the integrated process and also foster active communication among many participants of diverse technical backgrounds. As a case study, the model-based development of high-speed trains is discussed.
Heumgyeonggaknu is a water-hammering type automatic water clock which was made by Jang Yeong-Sil in 1438. The water clock that is located in Heumgyeonggaknu consists of Suho which is equipped with 2-stage overflow. Constant water wheel power is generated by supplying a fixed amount of water of Suho to Sususang, and this power is transferred to each floor at the same time. The 1st floor rotation wheel of Gasan consists of the operation structure which has the shape of umbrella ribs. The 2nd floor rotation wheel is made so that the 12 hour signal, Gyeong-Jeom signal, and Jujeon constitute a systematic configuration. The 3rd floor rotation wheel is made so that the signal and rotation of Ongnyeo and four gods can be accomplished. Based on the above conceptual design, this paper analyzed the internal signal generation and power transmission of Heumgyeonggaknu.