The purpose of this study was to derive an optimal mix design for bridge deck pavements that can compensate for the limitations of latexmodified concrete (LMC). To address the limitations of LMC, this paper proposes the incorporation of silica fume into LMC. Concrete mixtures with varying ratios of latex and silica fume were prepared, and tests for compressive strength, flexural strength, and chloride-ion penetration resistance were conducted to compare and analyze the fundamental performance of each mix. Latex contributed to the improvement of the initial pore structure and significantly affected the chloride-ion penetration resistance in the early stages of curing. However, its influence gradually diminished over time. In contrast, silica fume induced additional C-S-H formation and further improved the pore structure through pozzolanic reactions as time progressed, thus exerting a greater impact in the later stages of curing. The L7-SF8 variable demonstrated the best performance in terms of compressive strength and chloride-ion penetration resistance. Given the characteristics of bridge-deck pavements, this variable is considered the most suitable for ensuring long-term durability. Therefore, this paper proposes a mixture of 7% latex and 8% silica fume as the optimal mix design.
This study aimed to develop a pavement management system suitable for the climate and traffic characteristics of Gangwon Province. This research focused on analyzing the asphalt pavement performance characteristics of national highways in Gangwon Province by region and developing prediction models for the current pavement performance and annual changes in performance. Quantitative indicators were collected to evaluate the condition of national highway pavements in Gangwon Province, including factors affecting road performance, such as weather data and traffic volume. The Gangwon region was then classified according to its topography, climate, weather, traffic volume, and pavement performance. Prediction models for the current pavement performance and annual changes in performance were developed for national highways. This study also compared the predicted values for the Gangwon region using a nationwide pavement performance-prediction model from other studies with the predicted values from the developed annual changes in the performance prediction model. This study established a foundation for implementing a pavement management system tailored to the unique climate and traffic characteristics of Gangwon Province. By developing region-specific performance prediction models, this study provided valuable insights into more effective and efficient pavement maintenance strategies in Gangwon Province.
This study aimed to improve the accuracy of road pavement design by comparing and analyzing various statistical and machine-learning techniques for predicting asphalt layer thickness, focusing on regional roads in Pakistan. The explanatory variables selected for this study included the annual average daily traffic (AADT), subbase thickness, and subgrade California bearing ratio (CBR) values from six cities in Pakistan. The statistical prediction models used were multiple linear regression (MLR), support vector regression (SVR), random forest, and XGBoost. The performance of each model was evaluated using the mean absolute percentage error (MAPE) and root-mean-square error (RMSE). The analysis results indicated that the AADT was the most influential variable affecting the asphalt layer thickness. Among the models, the MLR demonstrated the best predictive performance. While XGBoost had a relatively strong performance among the machine-learning techniques, the traditional statistical model, MLR, still outperformed it in certain regions. This study emphasized the need for customized pavement designs that reflect the traffic and environmental conditions specific to regional roads in Pakistan. This finding suggests that future research should incorporate additional variables and data for a more in-depth analysis.
This study aimed to evaluate the performance criteria of low-noise asphalt pavements under laboratory conditions. Laboratory tests were performed on eight porous and three non-porous asphalt mixtures. Draindown, Cantabro, tensile strength ratio (TSR), and dynamic stability tests were conducted to evaluate durability. The functionality was assessed using sound-absorption and indoorpermeability- coefficient tests. The laboratory results showed that all mixtures satisfied the quality standards for the draindown and TSR tests. In the dynamic stability test, all the mixtures demonstrated adequate rutting resistance. For porous mixtures, the Cantabro test results indicated sufficient shatter resistance and the indoor-permeability-coefficient test confirmed proper drainage performance. All mixtures exhibited satisfactory sound absorption, with the porous mixtures exhibiting slightly better sound absorption than the non-porous mixtures. Both porous and non-porous mixtures are durable and functional and are used in Korea. Future field tests are required to evaluate the noise reduction performance under different conditions and to compare the in-situ performance results with those from laboratory tests.
PURPOSES : The aim of this study is to investigate the enhancement of performance and the mix design method for asphalt mixtures utilizing ferronickel slag, an industrial by-product METHODS : To enhance the performance of FNS asphalt, waste tire powder (CR) was incorporated, and the characteristics of FNS asphalt aggregate, along with the impact of CR, were evaluated through the mix design process. RESULTS : CR is found to be suitable with a size of 30 mesh, and the optimal usage amount is determined to be 1±0.1% of the mixture weight, considering dense grade asphalt mixture. Volumetric design considering the swelling characteristics of CR is necessary, and a mixing design with a consistent tendency can be achieved only when an appropriate VMA is secured. CONCLUSIONS : The mix design for FNS-R asphalt mixture requires an increase of approximately 1% in VMA compared to conventional dense-graded asphalt mixtures to accommodate the swelling of CR. Additionally, FNS-R asphalt exhibits improved resistance to rutting comparable to modified asphalt and meets quality standards, including stripping resistance.
PURPOSES : This study aims to conduct a laboratory evaluation on the use of ferronickel slag for manufacturing Hot Mix Asphalat mixtures. METHODS : This research was based on laboratory evaluation only, where conventional aggregate and FNS at a ratio of 7:3 were used in HMA and the volumetric properties, physical and mechanical properties, and long-term performance of FNS in asphalt mixture were evaluated. RESULTS : The overall results showed that FNS can be applied as aggregate in a hot mix asphalt since volumetric, physical and mechanical properties and long-term performance of HMA mixture with ferronickel slags as aggregate met the required standards according to Korean standards for Asphalt Concrete. CONCLUSIONS : The tensile strength ratio results of HMA mixtures with ferronickel aggregate did not meet the required standards, yet the addition of anti-stripping agent and waste glass fibers to the HMA mixture with ferronickel slags improved the tensile strength results to meet the standards. Additionally, compared to the HMA mixture of the same aggregate gradation but with only natural aggregate, HMA mixture with ferronickel slags had almost the same results for the majority of tests conducted.
PURPOSES : The aim of this study is to evaluate the stripping resistance of a bead coating via the Hamburg wheel tracking test and image analysis.
METHODS : First, the stripping resistance of the bead coating was evaluated via the Hamburg wheel tracking test. A pneumatic wheel with a load of 175±2 N was used to simulate repeated skid cycles. Several bead coating mixtures with different numbers of coating layers, i.e., zero, one, two, three, and four layers, i.e., zero, one, two, three, and four layers,were conducted. Finally, an image analysis program was developed to analyze surface images captured from the Hamburg wheel tracking test.
RESULTS : The results show that the samples with more coating layers exhibit higher stripping resistance. After 500 stripping cycles, the percentage of bead loss is 4% to 28%. At 80% bead loss, the mixture with one coating layer presents more skid cycles than the control sample without a coating layer.
CONCLUSIONS : Incorporating a coating layer can improve the stripping resistance of glass beads under repeated skid cycles. Additionally, an image analysis program is established in this study to determine the percentage of bead loss caused by the stripping test.