검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2013.10 구독 인증기관·개인회원 무료
        Background: Propionibacterium acnes (P. acnes) is a major contributing factor for the inflammatory reaction of acne. Bee venom (BV) has been traditionally used to the treatment for inflammatory diseases. This study examined the anti-inflammatory effect of BV on P. acnes-induced inflammatory animal model. Methods: P. acnes were intradermally injected into both left and right ear of ICR mice. After injection, different concentrations of BV (1, 10 and 100 μg) mixed with 0.05 g of Vaseline was applied to the surface of the right ears of mice. Results: Histological observation revealed that P. acnes induced a considerable increase in the number of infiltrated inflammatory cells. However, BV treatment showed markedly reduced these reactions. Also, expression levels of TNF-α, and IL-1β were significant reduced in BV treated mice compared with P. acnes injected mice. The binding activity of NF-κB and AP-1 were increased in the P. acnes and Vaseline groups. In contrast, this enhancement of binding activity was markedly withdrawn after treatment with BV. Conclusion: In conclusion, this study indicates that BV has potential as an anti-acne agent and may be useful in the pharmaceutical and cosmetic industries.
        2.
        2013.10 구독 인증기관·개인회원 무료
        Propionibacterium acnes (P. acnes) cause an inflammatory acne that plays an important role in the pathogenesis of acne by inducing inflammatory mediators. Bee venom therapy has been used in oriental medicine for the relief of pain and the treatment of inflammatory diseases. However, a direct effect of bee venom in skin inflammation has not been established. The purpose of this study was to investigate anti-inflammatory properties of bee venom in skin inflammation stimulated by heat-killed P. acnes using human keratinocytes and monocytes cell line. P. acnes stimulates the production of proinflammatory cytokines such as interleukins-1β, -8, interferon-γ and tumor necrosis factor-α in HaCaT and THP-1 cells. Bee venom effectively inhibits the secretion of IL-1β, IL-8, IFN-γ, and TNF-α. P. acnes treatment activates the expression of TLR2, which results in IL-8 expression. However, bee venom treatment reduces the expression of TLR2 and IL-8. Based on these results, bee venom has effects on anti-inflammatory activity against P. acnes in HaCaT and THP-1 cells.