Detailed temperature distributions of the spent fuel are required to evaluate the long-term integrity of the dry storage system. In this study, a subchannel analysis method was established to obtain the detailed temperatures of a spent fuel using the COBRA-SFS code. The SAHTT (Single Assembly Heat Transfer Test) model was selected as the subchannel analysis. It was developed at the PNL to investigate heat transfer characteristics of spent PWR fuel under dry storage conditions. The SAHTT has a 15×15 rod array with simulated rods 0.42 in. (10.7 mm) in diameter. Control rod thimbles were modeled with unheated rods. The COBRA-SFS input consists a detailed subchannel model with 256 subchannels, 225 rods, and 8 slab nodes. The heat generation rate was axially uniform with total power of 1.0 kW. Subchannel analyses were performed for the vertical orientation under three different backfills of air, helium, and vacuum. For the vacuum backfill, the peak temperature was the highest and temperature gradients the sharpest only due to the radiation heat transfer effect. For the helium backfill, peak temperature was lowest and the axial profiles flattest due to the higher conductivity and lower density of helium. Subchannel analyses were also performed to evaluate the effect of thermal parameters such as surface emissivity, convective heat transfer coefficients, and flow resistance coefficients on the PCT (Peak Cladding Temperature). The PCT was affected by the emissivity of the fuel rod and the basket, and in particular, the basket emissivity had a greater effect. The PCT was affected by the Nusselt number, but the range of the Nusselt number is around 3.66. Therefore, the effect of the Nusselt number on the PCT will not be significant. As a result of the analysis according to the flow resistance coefficients, the PCT was affected by the wall friction factor, but the loss coefficients from the space grid had little effect. Subchannel technique obtained from this work can be used to predict the detailed temperature distributions of spent fuel assembly.
Bird screen meshes are installed at the air inlet and outlet ducts of spent fuel storage casks to inhibit the intrusion of debris from the external environment. The presence of these screens introduces an additional resistance to air flow through the ducts. In this study, a porous media model was developed to simplify the bird screen meshes. CFD analyses were used to derive and verify the flow resistance factors for the porous media model. Thermal analyses were carried out for concrete storage cask using the porous media model. Thermal tests were performed for concrete casks with bird screen meshes. The measured temperatures were compared with the analysis results for the porous model. The analysis results agreed well with the test results. The analysis temperatures were slightly higher than the test temperatures. Therefore, the reliability and conservatism of the analysis results for the porous model have been verified.
This study presents the thermal analyses of a spent fuel dry storage cask under normal and off-normal conditions. The environmental temperature is assumed to be 15 under the normal condition. The off-normal condition has an environmental temperature of 38 . An additional off-normal condition is considered as a partial blockage of the air inlet ducts. Two of the four air inlet ducts are assumed to be completely blocked. The significant thermal design feature of the storage cask is the air flow path used to remove the decay heat from the spent fuel. Natural circulation of the air inside the cask allows the concrete and fuel cladding temperatures to be maintained below the allowable values. The finite volume computational fluid dynamics code FLUENT was used for the thermal analysis. The maximum temperatures of the fuel rod and concrete overpack were lower than the allowable values under the normal and off-normal conditions.