검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2013.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The microstructure evolution during sintering of the W-5 wt.%Cu nanocomposite powders was investigated for the purpose of developing a high density W-Cu alloy. The W-5 wt.%Cu nanopowder compact, fully-densified during sintering at 1623 K, revealed a homogeneous microstructure that consists of high contiguity structures of W-W grains and an interconnected Cu phase located along the edges of the W grains. The Vickers hardness of the sintered W-5 wt.%Cu specimen was Hv much higher than that ( Hv) of the conventional heavy alloy. This result is mostly due to the higher contiguity microstructure of the W grains compared to the conventional W heavy alloy.
        3,000원
        2.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The key concept of nanopowder agglomerate sintering (NAS) is to enhance material transport by controlling the powder interface volume of nanopowder agglomerates. Using this concept, we developed a new approach to full density processing for the fabrication of pure iron nanomaterial using Fe nanopowder agglomerates from oxide powders. Full density processing of pure iron nanopowders was introduced in which the powder interface volume is manipulated in order to control the densification process and its corresponding microstructures. The full density sintering behavior of Fe nanopowders optimally size-controlled by wet-milling treatment was discussed in terms of densification process and microstructures.
        4,000원