We investigate two abnormal CME-Storm pairs that occurred on 2014 September 10 - 12 and 2015 March 15 - 17, respectively. The first one was a moderate geomagnetic storm (Dstmin -75 nT) driven by the X1.6 high speed flare-associated CME (1267 km s−1) in AR 12158 (N14E02) near solar disk center. The other was a very intense geomagnetic storm (Dstmin -223 nT) caused by a CME with moderate speed (719 km s−1) and associated with a filament eruption accompanied by a weak flare (C9.1) in AR 12297 (S17W38). Both CMEs have large direction parameters facing the Earth and southward magnetic field orientation in their solar source region. In this study, we inspect the structure of Interplanetary Flux Ropes (IFRs) at the Earth estimated by using the torus fitting technique assuming self-similar expansion. As results, we find that the moderate storm on 2014 September 12 was caused by small-scale southward magnetic fields in the sheath region ahead of the IFR. The Earth traversed the portion of the IFR where only the northward fields are observed. Meanwhile, in case of the 2015 March 17 storm, our IFR analysis revealed that the Earth passed the very portion where only the southward magnetic fields are observed throughout the passage. The resultant southward magnetic field with long- duration is the main cause of the intense storm. We suggest that 3D magnetic field geometry of an IFR at the IFR-Earth encounter is important and the strength of a geomagnetic storm is strongly affected by the relative location of the Earth with respect to the IFR structure.
Since Montreal protocol in1989 designated MB(methyl bromide) as ozone depleting chemicals, IPPC(International Plant Protection Convention) has adopted replacing the MB with alternative chemical and reducing the rate of MB use in plant quarantine in 2008. Pineapples are one of the most frequently fumigated imported fruit with MB in Korea. However, there was no technically available replacement. Therefore, we evaluated phosphine(PH3) fumigation as alternative to MB in applying pineapples.
In the preliminary test, PH3 gas in 12L desicators to calculate ranged to 0.1 from 2g/m3 was tested at 2 and 24hr exposure to target pest, citrus mealy bug(CMB, Planococcus citri). All different of stage of CMB was shown 100% mortality when 2g/m3 of PH3 applied for 24hrs at 8℃. To confirm studies designed in 0.5m3 fumigation chamber, all egg, nymph and adult stages of CMB was killed completely and there wasn’t any phytotoxic and quality damages on pineapples for 2 weeks post-fumigation periods at 8℃. In terms of commercial use, further commercial research will need to be carry out in cooperation with importers and fumigators.
Experimental measurements of flame shape and heat transfer characteristics were performed for impinged inverse diffusion flame(IDF) using propane as a fuel. The purpose of this study is to identify the favorable co-axial inverse diffusion flame structure for impingement heating. The flame consisted of an entrainment zone and mixing and combustion zone. The heat flux which represents heat transfer rate is measured by using a heat flux sensor that is located at the center of the impingement plate. The inverse diffusion flame structure has been classified into six modes. In these modes, several favorable flames for impingement heating were identified. In this study, the parameters are overall equivalent ratio(Φ), nozzle to impingement plate distance(h/d), vertical distance from the stagnation point and Reynolds number(Re) of combustion air.