Herein a rich, Se-nanoparticle modified Mo-W18O49 nanocomposite as efficient hydrogen evolution reaction catalyst is reported via hydrothermal synthesized process. In this work, Na2SeSO3 solution and selenium powder are used as Se precursor material. The structure and composition of the nanocomposites are characterized by X-ray diffraction (XRD), high-resolution field emission scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), EDX spectrum analysis and the corresponding element mapping. The improved electrochemical properties are studied by current density, and EIS analysis. The as-prepared Se modified Mo-W18O49 synthesized via Na2SeSO3 is investigated by FE-SEM analysis and found to exhibit spherical particles combined with nanosheets. This special morphology effectively improves the charge separation and transfer efficiency, resulting in enhanced photoelectric behavior compared with that of pure Mo-W18O49. The nanomaterial obtained via Na2SeSO3 solution demonstrates a high HER activity and low overpotential of -0.34 V, allowing it to deliver a current density of 10 mA cm2.
In this investigation, Bi2MoO6 deposited graphene nanocomposite (BMG) was synthesized using a simple microwave assisted hydrothermal synthesis method. The synthesized BMG nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy with energy dispersive X-ray analysis, and photocurrent analysis. The study revealed that the catalysts prepared have high crystalline nature, enhanced light responsive property, high catalytic activity, and good stability. XRD results of BMG composite exhibit a koechlinite phase of Bi2MoO6. The surface property is shown by SEM and TEM, which confirmed a homogenous composition in the bulk particles of Bi2MoO6 and nanosheets of graphene. The catalytic behavior was investigated by the decomposition of Rhodamine B as a standard dye. The results exhibit excellent yields of product derivatives at mild conditions under ultrasonic/visible light-medium. Approximately 1.6-times-enhanced sono-photocatalytic activity was observed by introduction of Bi2MoO6 on graphene nanosheet compared with control sample P25 during 50 min test.
To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.
Herein, a series of g-C3N4 modified Bi2MoO6 nanocomposites using Bi2MoO6 and melamine as original materials are fabricated via sintering process. For presynthesis of Bi2MoO6 an ultrasonic-assisted hydrothermal technique is researched. The structure and composition of the nanocomposites are characterized by Raman spectroscopy, X-ray diffraction (XRD), and high-resolution field emission scanning electron microscopy (SEM). The improved photoelectrochemical properties are studied by photocurrent density, EIS, and amperometric i-t curve analysis. It is found that the structure of Bi2MoO6 nanoparticles remains intact, with good dispersion status. The as-prepared g-C3N4/Bi2MoO6 nanocomposites (BMC 5-9) are selected and investigated by SEM analysis, which inhibits special morphology consisting of Bi2MoO6 nanoparticles and some g-C3N4 nanosheets. The introduction of small sized g-C3N4 nanosheets in sample BMC 9 is effective to improve the charge separation and transfer efficiency, resulting in enhancing of the photoelectric behavior of Bi2MoO6. The improved photoelectronic behavior of g-C3N4/Bi2MoO6 may be attributed to enhanced charge separation efficiency, photocurrent stability, and fast electron transport pathways for some energy applications.
A facile microwave assisted solvothermal process is designed for fabricating SnS nanoparticles decorated on graphene nanosheet, which used as visible light driven photocatalyst. Some typical characterization techniques such as XRD, FT-IR, SEM with EDX analysis, and TEM and BET analysis are used to analyse the physical characteristics of as-prepared samples. Spherical SnS nanoparticles are uniformly dispersed on the surface of graphene nanosheet due to ammonia, which can prevent the aggregation of graphene oxide. Meanwhile, microwave radiation provides fast energy that promotes the formation of spherical SnS nanoparticles within a short time. The visible light photocatalytic activity of as-prepared SnS-GR nanocomposites is analysed through photodegradation efficiency of methylene blue with high concentration. According to the higher photocatalytic property, the as-prepared SnS-GR nanocomposites can be expected to be an efficient visible light driven photocatalyst. After five cycles for decolorization, the rate decreases from 87 % to 78 % (about 9 %). It is obvious that the photocatalytic activity of SnS-GR nanocomposite has good repeatability.
In this work, Ag3PO4/In2S3 nanocomposites with low loading of In2S3 (5-15 wt %) are fabricated by two step chemical precipitation approach. The microstructure, composition and improved photoelectrochemical properties of the asprepared composites are studied by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), photocurrent density, EIS and amperometric i-t curve analysis. It is found that most of In2S3 nanoparticles are deposited on the surfaces of Ag3PO4. The as-prepared Ag3PO4/ In2S3 composite (10 wt%) is selected and investigated by SEM and TEM, which exhibits special morphology consisting of lager size substrate (Ag3PO4), particles and some nanosheets (In2S3). The introduction of In2S3 is effective at improving the charge separation and transfer efficiency of Ag3PO4/In2S3, resulting in an enhancement of photoelectric behavior. The origin of the enhanced photoelectrochemical activity of the In2S3-modified Ag3PO4 may be due to the improved charge separation, photocurrent stability and oriented electrons transport pathways in environment and energy applications.
최근 미세먼지 농도가 높은 날이 늘면서 국민들의 관심도 증가하고 있다. 미세먼지의 분포는 공간적으로 상이하며 그 발생도 지역별로 다르게 기인하는데도 불구하고 미세먼지 저감을 위한 정책은 차별성 없이 이루어지고 있기 때문에 미세먼지의 공간적 이질성을 반영한 연구가 필요하다. 본 연구에서는 미세먼지 농도에 영향을 미치는 자연요소와 인문요소를 함께 고려하여 요인을 선정 후 OLS, GWR, GWRR기법을 이용하여 미세먼지 분포의 공간 패턴을 분석하였다. 연구결과는 다음과 같다. 첫째, OLS 분석 결과 자연요인의 경우 강수량과 대기정체일이 적을수록 그리고 주변고도가 낮을수록 미세먼지의 높은 농도의 기여율이 높았으며, 축사나 공업시설과 같은 인문요인의 경우 대부분 미세먼지와 양의 관계가 있음이 파악되었다. 둘째, GWRR 분석 결과 각 하위 지역별로 미세먼지의 분포에 영향을 주는 변수나 그 정도는 다르게 나타났다. 셋째, GWRR의 효용성 평가 결과 GWRR이 다른 두 모델에 비해 향상된 결과를 보였으며, 이는 미세먼지 뿐만 아니라 다양한 대기오염물질의 분석에도 적용이 가능함을 확인하였다.
우리나라의 국회의원은 대부분 선거구 단위로 선출되기 때문에 선거는 지리학의 주요 관심대상이 된다. 이 연구의 주된 목적은 수도권을 사례지역으로 하여 19대 및 20대 국회의원 선거 결과에서 나타난 공간 패턴의 변화 양상을 분석하는 것이다. 이를 위해서 읍면동 단위의 지역구 및 비례대표 선거 결과 데이터에 대해 공간통계 분석을 수행하였는데, 주요 결과는 다음과 같다. 첫째, 지역구와 비례대표 모두 여당의 득표율이 상당히 줄었지만, 양당 기준 하에서의 여당의 총 득표율, 그리고 최다득표동의 수 및 득표율은 큰 변화가 없는 것으로 나타났다. 둘째, 각 시점 별 여당 득표율의 공간 군집성을 분석한 결과 읍면동 단위가 선거구 단위에 비해, 비례대표 선거가 지역구 선거에 비해 더 강한 공간 군집성을 보였다. 서울 남동부 및 경기도 외곽에서 득표율이 높은 반면 서울의 여타 지역 및 서울 인접 지역에서는 득표율이 낮은 패턴이 대체로 유지되면서 시점 간에 전역적인 공간 군집성은 큰 변화가 없었으나 국지적으로는 지역구와 비례대표 모두 다소 간의 변화가 나타났다. 셋째, 두 시점 간의 여당 득표율의 공간적 상관성을 분석한 결과 대체로 정치적 성향을 유지하는 경향이 우세하였다. 읍면동 기준으로 약 30%는 공간 군집을 이루면서 정치 성향을 유지하는 경향이 강한 것으로 나타났는데, 득표율의 변화가 발생한 지역 또한 강한 공간 군집성을 나타내었다
SnS-TiO2 nanocomposites are synthesized using simple, cheap, and less toxic SnCl2 as the tin (II) precursor. The prepared nanoparticles are characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV-Vis diffuse reflectance spectra (DRS). The XRD and TEM results indicate that the prepared product has SnS nanoparticles and a grain diameter of 30 nm. The DRS demonstrate that SnS-TiO2 possesses the absorption profile across the entire visible light region. The generation of reactive oxygen species is detected through the oxidation reaction from 1,5-diphenyl carbazide (DPCI) to 1,5-diphenyl carbazone (DPCO). It is found that the photocurrent density and photocatalytic effect increase with the modified SnS. Excellent catalytic degradation of Texbrite BA-L (TBA) solution is observed using the SnS-TiO2 composites under visible light irradiation. It is proposed that both the strong visible light absorption and the multiple exciton excitations contribute to the high visible light photocatalytic activity.
Cubic mesocrystal CeO2 was synthesized via a hydrothermal method with glutamic acid (C5H9NO4) as a template. The XRD pattern of a calcined sample shows the face-centered cubic fluorite structure of ceria. Transmission electron microscopy (TEM) and the selected-area electron diffraction (SAED) pattern revealed that the submicron cubic mesocrystals were composed of many small crystals attached to each other with the same orientation. The UV-visible adsorption spectrum exhibited the red-shift phenomenon of mesocrystal CeO2 compared to commercial CeO2 particles; thus, the prepared materials show tremendous potential to degrade organic dyes under visible light illumination . With a concentration of a rhodamine B solution of 20 mg/L and a catalyst amount of 0.1 g/L, the reaction showed higher photocatalytic performance following irradiation with a xenon lamp (≥ 380 nm). The decoloring rate can exceed 100% after 300 min.