The necessity of conditional gene expression in pigs for transgenic models is raised. Thus, in this study, Cre-loxP conditional expression in porcine fetal fibroblasts was investigated and the transformed fibroblasts were reprogrammed in enucleated oocytes for further early embryonic development. Fetal fibroblasts from miniature pigs were used for transfection with pCALNL-DsRed including floxed neomycin resistant gene and selected with 750 ug/mL neomycin for two weeks. The transfected cells did not express DsRed under fluorescence microscope. After transient transfection of plasmid DNA expressing Cre, the fibroblasts began to express DsRed. The cells expressing Ds- Red were employed into somatic cell nuclear transfer (SCNT). A total of 121 oocytes were used for SCNT and 76 cloned embryos (62.8%)were cleaved. Six blastocysts were grown up after SCNT and expressed DsRed. Deletion of floxed neomycin resistant gene was confirmed by RT-PCR in cloned blastocysts. Taken together, this study demonstrated that Cre-loxP recombination in miniature pig fibroblasts were successfully worked and those sequential transformed cells were developed into pre-implantation stage via SCNT.
We have been making dual dome enclosures which are useful to track artificial space objects at SSNT (Space Science and Technology Lab.) Kyung Hee University. We verified the safety of the dome enclosures using basic design and structure analyses before manufacturing them, and then performed an optimization analysis for economic and safe systems. The dome enclosure has a fully-open type structure to smoothly operate a telescope made in the style of altazimuth mount with very fast tracking. It is also designed to be safe against extreme weather conditions. The general structure of the observatory system consists of the dual dome enclosures at the top of a container. For the structural analyses, we consider the following two methods: (1) gravitational sustain analysis - how the structure supporting the dome withstand the weight of the dome, and (2) wind load analysis that considers the effect of the wind velocity at the region where the observatory is located. The result of overall deformation is found to be less than 0.551mm and the result of equivalent stress is found to be 20.293Mpa, indicating that the dual dome system is reasonably designed. This means structurally to be safe.
Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in operating of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS(Personal Computer based Telescope Control System) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC(brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the user friendly GUI(Graphic User Interface).
An alt-azimuth type mount system, developed at the Space Science and Technology Laboratory, Kyung Hee University, has been found to experience some difficulties in monitoring of the artificial space objects. Since the telescope installed on the alt-azimuth mount does not rotate on the same axis as the earth does, this mount system needs an instrument rotator to correct the field rotation. Although there are some commercial instrument rotators already in the market, those are not suitable for our system due to their low interchangeability. In this study, we have designed a new high speed instrument rotator and calculated the deformation of new designed system using structural analyses.
LIST is the Lyman-α Imaging Solar Telescope, a project funded by the Korean government to fly on the second Korean Science and Technology research Satellite (STSat-2) due to launch in December 2005. The Principal Investigator is Dr. Minhwan Jang of Kyung-Hee University and of the Space Payload Research Center (SPARC), a consortium of Korean universities and institutions formed to develop scientific research projects in space. The purpose of the LIST project is to design, build, and operate an instrument on STSat-2 which will make images of the Sun from Earth orbit at the wavelength of the Hydrogen Lyman-a emission line at 121.6 nm. LIST has a simple design concept comprised of a small telescope to image the full disk of the Sun onto a CCD detector and a set of filters to isolate the 121.6 nm wavelength.