검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2017.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 염지제의 종류에 따른 발효소시지의 숙성 중 미생물 및 위생적 품질 변화에 미치는 영향에 대해 살펴보았다. 천일염+NaNo2, 정제소금+NaNo2, KCl+NaNo2, MgCl2+NaNo2 총 4가지 형태의 염 지제 종류에 따라 제조된 발효소시지를 숙성 중 수분활성도, VBN, TBA 및 미생물 분석을 실시하였다. 수분활성도의 경우 숙성28일과 35일에서 KCl+NaNo2 처리구가 다른 처리구보다 가장 낮은 값을 나타 내었다(p<0.05). VBN 의 경우 숙성기간 중 KCl+NaNo2 처리구가 다른 처리구보다 가장 낮은 값을 나 타내었다(p<0.05). TBA 값은 숙성기간 중 KCl+NaNo2 처리구가 가장 낮은 값을 나타내었고, 천일염 +NaNo2처리구가 가장 높은 값을 나타내었다(p<0.05). 미생물 분석 결과, 유산균수의 경우 처리구와 상관없이 숙성 14일까지 증가하다, 숙성 35일까지 약간 감소하는 경향을 나타내었다(p<0.05). 본 연구 결과를 통해 염지제로서 염화나트륨을 대체할 수 있는 KCl의 사용이 위생적 품질에 악영향 없이 염화 나트륨 함량을 감소시킬 수 있는 가장 좋은 방법이고 저염 육제품 개발을 위한 기초자료로 활용될 수 있을 것이라 사료된다.
        4,000원
        2.
        2013.11 서비스 종료(열람 제한)
        Compact fluorescent lamps are strongly encouraged to manage separately in Korea because Compact fluorescent lamps contain mercury. Compact fluorescent lamps have managed as household waste in Korea, however, even though Compact fluorescent lamps contains hazardous material such as mercury. The aim of management of Compact fluorescent lamps separately is to reduce the release of mercury from Compact fluorescent lamp lamps into the environment and to reuse of the glass, metals and other components of Compact fluorescent lamps. The amount of mercury in a fluorescent lamps varies, depending on the type of lamp and manufacturer, but typically ranges between 5 milligrams and 30 milligrams. The mercury content of fluorescent lamps has been reported to be between 0.72 and 115 mg/lamp with an average mercury content of about 30 mg/lamp in 1994. Although manufacturers have greatly reduced the amount of mercury used in fluorescent lamps over the past 20years, mercury is an essential component to fluorescent lamps and can’t be eliminated completely in lamps. In the crushing process, CFL(compact fluorescent lamp) is separated into glass, plastic, ballast, phosphor powder and vapor. Using the crushing technique, concentration of mercury vapor emission from CFL is evaluated. Through the experiments, the efficiency of the crushing and separation for the unit is estimated by measuring the volume of CFL. In this study, the concentration of mercury is analyzed by MVI(Mercury Vapor Indicator) method for vapor in CFL. From the results of mercury distribution for 3 companies, the concentration of mercury in compact fluorescent lamp is less than that in the other type lamps. And phosphor powder has greater than 99% of total mercury amount in CFL and the mercury concentration in phosphor powder is measured between 1,008ppm and 1,349ppm. The mercury concentration in phosphor powder can be changed by the type of company and period of usage. KET and TCLP are carried out for phosphor powder, glass, plastic, ballast and base cap to estimate the hazardous characteristic. From the results of KET and TCLP test for CFL, phosphor powder from CFL should be controlled separately by stabilization or other methods to reuse as a renewable material because the phosphor powder is determined as a hazardous waste. From the results of characteristics of CFL, the carbonization system of CFL should be carried out in the temperature of less than 350℃. The amount of mercury in a fluorescent lamps varies, depending on the type of lamp and manufacturer, but typically ranges between 5 milligrams and 30 milligrams. The mercury content of Compact fluorescent lamps has been reported to be between 0.72 and 115 mg/lamp with an average mercury content of about 30 mg/lamp in 1994. Although manufacturers have greatly reduced the amount of mercury used in fluorescent lamps over the past 20years, mercury is an essential component to fluorescent lamps and can’t be eliminated completely in lamps. In Korea, demonstration for recycling of U type lamps had once begun in the area of Seoul Metropolitan, 2000. In 2004, U type lamps was included as an item in EPR(Extended Producer Responsibility) system. According to Korea Lighting Recycling Association, approximately 38 million Compact fluorescent lamps were recycled in Korea, 2011 because 3 recycling facilities for Compact fluorescent lamps are operated in Korea. Recycling rate of Compact fluorescent lamps in Korea is about 31.0% but about 70% of Compact fluorescent lamps may not manage properly. Hence, discarded lamps release approximately 2 to 3 tons of mercury per year into the environment[6]. In USA, Compact fluorescent lamps has controlled by Universal Waste Rule and merchandises containing mercury prohibited to produce. Also, MEBA(Mercury Export Ban Act) is activated in USA from 2013. According to Association of Lighting and Mercury Recycler, member companies accomplish about 85% of the lamp recycling done each year. In Germany, best available technology (BAT) system for recycling of Compact fluorescent lamps is established and about 20 companies are involved in recycling of Compact fluorescent lamps. In 1994, approximately 70-80% of total Compact fluorescent lamps are recycled in 1994 and Compact fluorescent lamps was included as an item in EPR(Extended Producer Responsibility) system in 1996. In Sweden, MRT System, which was developed by Lumalampan, separated mercury from Compact fluorescent lamps by distillation operation, 1979. Reverse route collection system is active to improve the collection of Compact fluorescent lamps. Compact fluorescent lamps was included as an item in EPR(Extended Producer Responsibility) system in 2001. In Austria, about 40 companies are involved in recycling of Compact fluorescent lamps to recycle glass and ferrous metals. And wastes containing mercury are treated in landfill site by using special container [7,8]. In this study, Compact fluorescent lamps is cut by a end-cutting unit with a cam crusher and base-cap is separated from glass part. In the end-cutting unit, a vacuum system is operating to collect mercury vapor to prevent leaking from the end-cutting unit. First of all, characteristics and major composition of Compact fluorescent lamps are estimated. Through the experiments, it is measured mercury concentration in the parts of Compact fluorescent lamps such as glass tube, phosphor powder, and base cap after separation in the end-cutting unit. Also, it is evaluated mercury emission from Compact fluorescent lamps by measuring the concentration of effluent gas in the end-cutting unit with changing flow rate. Finally, Korea Extraction Method (KET) and TCLP(Toxicity Characteristic Leaching Procedure) test are applied to phosphor powder to verify that phosphor powder is a hazardous waste [9].
        3.
        2013.07 서비스 종료(열람 제한)
        To evaluate expression level of HMW-GS protein qualitatively and quantitatively, we separated glutenin fractions and conducted two-dimensional electrophoresis (2DE) in 32 cultivars of Korean wheat for the use of as the basis of wheat breeding. The average spot number of HMW-GS in all Korean wheat cultivars was 11.78 which included 1.31, 5.53 and 4.94 to Glu-A1, Glu-B1 and Glu-D1 loci, respectively. Cultivars harboring 1, 2* subunits had many spots more than ones harboring null allele in Glu-A1 loci because there is no difference of spots between Glu-B1 and Glu-D1 loci. In total spot number of HMW-GS, the highest one was Jokyung as 18 and Dahong the lowest as 7. When the Korean wheat cultivars were compared with the Chinese spring in the average relative expression level, Korean one’s were lower as 0.44. Especially, Gobun was the highest as 1.11 and Eunpa was the lowest as 0.24. Also we investigated phylogenetic relationship based on both frequency of HMW-GS spots and quantification value of each spot to all HMW-GS spots. As a result, Korean the varieties of Korean wheat could be classified into six groups.
        4.
        2010.04 KCI 등재 서비스 종료(열람 제한)
        Recent interest in green tea polyphenols has increased owing to their antioxidant activities and their possible role in the prevention of cancer and cardiovascular diseases. Typically, 93% compounds of total polyphenols in green tea leaves, many of which are called catechins, are flavonoids. The major tea catechins are a mixture of epicatechin isomers, including (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epicatechin (EC). Separation of green tea catechins is generally carried out by HPLC-UVD. UV detector is a suitable detector for quantification this class of molecules and allows high sensitivity level for polyunsaturated species. However, UV detection does not discriminate different compounds having similar chromophore groups. More detailed structural information can be collected when a mass spectrometer is coupled with a UV-DAD. MSD is a powerful tool for qualitative analysis to identify and confirm molecular structures of unknown compounds, and it is particularly useful for quantitative analysis, owing to its high sensitivity and selectivity. This study describes the application of HPLC-DAD/MS methods for the rapid and routine analysis of 9 catechins in green tea leaves. Green tea extracts were injected directly onto a reversed phase HPLC column. Compounds, identified on the basis of their absorbance and MS spectrum, included gallic acid, (-)-epicatechin, and their various gallate derivatives. HPLC/MS detection was found to be more sensitive than UV-DAD, and MSD showed good precisions for quantification of catechins.