검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2012.08 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        TiO2 thin films for high energy density capacitors were prepared by r.f. magnetron sputtering at room temperature.Flexible PET (Polyethylene terephtalate) substrate was used to maintain the structure of the commercial film capacitors. Theeffects of deposition pressure on the crystallization and electrical properties of TiO2 films were investigated. The crystal structureof TiO2 films deposited on PET substrate at room temperature was unrelated to deposition pressure and showed an amorphousstructure unlike that of films on Si substrate. The grain size and surface roughness of films decreased with increasing depositionpressure due to the difference of mean free path. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation ofchemically stable TiO2 films. The dielectric constant of TiO2 films was significantly changed with deposition pressure. TiO2films deposited at low pressure showed high dissipation factor due to the surface microstructure. The dielectric constant anddissipation factor of films deposited at 70mTorr were found to be 100~120 and 0.83 at 1kHz, respectively. The temperaturedependence of the capacitance of TiO2 films showed the properties of class I ceramic capacitors. TiO2 films deposited at10~30mTorr showed dielectric breakdown at applied voltage of 7V. However, the films of 500~300nm thickness depositedat 50 and 70mTorr showed a leakage current of ~10−8~10−9 A at 100 V.
        4,000원
        2.
        2011.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, optical emission spectroscopy was used to monitor the plasma produced during the RF magnetron sputtering of a BaTiO3 target. The intensities of chemical species were measured by real time monitoring with various discharge parameters such as RF power, pressure, and discharge gas. The emission lines of elemental and ionized species from BaTiO3 and Ti targets were analyzed to evaluate the film composition and the optimized growth conditions for BaTiO3 films. The emissions from Ar(I, II), Ba(I, II) and Ti(I) were found during sputtering of the BaTiO3 target in Ar atmosphere. With increasing RF power, all the line intensities increased because the electron density increased with increasing RF power. When the Ar pressure increased, the Ba(II) and Ti(I) line intensity increased, but the Ar+ line intensity decreased with increasing pressure. This result shows that high pressure is of greater benefit for the ionization of Ba than for that of Ar. Oxygen depressed the intensity of the plasma more than Ar did. When the Ar/O2 ratio decreased, the intensity of Ba decreased more sharply than that of Ti. This result indicates that the plasma composition strongly depends on the discharge gas atmosphere. When the oxygen increased, the Ba/Ti ratio and the thickness of the films decreased. The emission spectra showed consistent variation with applied power to the Ti target during co-sputtering of the BaTiO3 and Ti targets. The co-sputtered films showed a Ba/Ti ratio of 1.05 to 0.73 with applied power to the Ti target. The films with different Ba/Ti ratios showed changes in grain size. Ti excess films annealed at 600˚C did not show the second phase such as BaTi2O5 and TiO2.
        4,000원
        3.
        2010.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        MgTiO3 thin films were prepared by r.f. magnetron sputtering in order to prepare miniaturized NPO type MLCCs.MgTiO3 films showed a polycrystalline structure of ilmenite characterized by the appearance of (110) and (202) peaks. Theintensity of the peaks decreased with an increase in the chamber pressure due to the decrease of crystallinity which resultedfrom the decrease of kinetic energy of the sputtered atoms. The films annealed at 600oC for 60min. showed a fine grainedmicrostructure without micro-cracks. The grain size and roughness of the MgTiO3 films decreased with the increase of chamberpressure. The average surface roughness was 1.425~0.313nm for MgTiO3 films prepared at 10~70mTorr. MgTiO3 films showeda dielectric constant of 17~19.7 and a dissipation factor of 2.1~4.9% at 1MHz. The dielectric constant of the films is similarto that of bulk ceramics. The dielectric constant and the dissipation factor decreased with the increase of the chamber pressuredue to the decrease of grain size and crystallinity. The leakage current density was 10−5~10−7A/cm2 at 200kV/cm and this valuedecreased with the increase of the chamber pressure. The small grain size and smooth surface microstructure of the filmsdeposited at high chamber pressure resulted in a low leakage current density. MgTiO3 films showed a near zero temperaturecoefficient and satisfied the specifications for NPO type materials. The dielectric properties of the MgTiO3 thin films preparedby sputtering suggest the feasibility of their application for MLCCs.
        4,000원
        4.
        2009.11 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        BiFeO3 (BFO) thin films were prepared on Pt/TiO2/Si substrate by r.f. magnetron sputtering. The effects of deposition pressure on electrical properties were investigated using measurement of dielectric properties, leakage current and polarization. When BFO targets were prepared, Fe atoms were substituted with Mn 0.05% to increase electrical resistivity of films. (Fe+Mn)/Bi ratio of BFO thin films increases with increasing partial pressure of O2 gas. The deposited films showed the only BFO phase at 10 mTorr, the coexistence of BFO and Bi2O3 phase at 30-50 mTorr, and the only Bi2O3 phase at 70 mTorr. The crystallinity of BFO films was reduced due to the higher Bi contents and the decrease of surface mobility of atoms at high temperature. The porosity and surface roughness of films increased with the increase of the deposition pressure. The films deposited at high pressure showed low dielectric constant and high leakage current. The dielectric constant of films deposited at various deposition pressures was 84~153 at 1 kHz. The leakage current density of the films deposited at 10~70 mTorr was about 7×10.6~1.5×10.2A/cm2 at 100 kV/cm. The leakage current was found to be closely related to the morphology and composition of the BFO films. BFO films showed poor P-E hysteresis loops due to high leakage current.
        4,000원
        5.
        2009.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Mn-substituted BiFeO3(BFO) thin films were prepared by r.f. magnetron sputtering under an Ar/O2mixture of various deposition pressures at room temperature. The effects of the deposition pressure andannealing temperature on the crystallization and electrical properties of BFO films were investigated. X-raydiffraction patterns revealed that BFO films were crystallized for films annealed above 500oC. BFO filmsannealed at 550oC for 5 min in N2 atmosphere exhibited the crystallized perovskite phase. The (Fe+Mn)/Biratio decreased with an increase in the deposition pressure due to the difference of sputtering yield. The grainsize and surface roughness of films increased with an increase in the deposition pressure. The dielectricconstant of BFO films prepared at various conditions shows 127~187at 1kHz. The leakage current densityof BFO films annealed at 500oC was approximately two orders of magnitude lower than that of 550oC. Theleakage current density of the BFO films deposited at 10~30m Torr was about 5×10-6~3×10-2A/cm2 at 100kV/cm. Due to the high leakage current, saturated P-E curves were not obtained in BFO films. BFO film annealedat 500oC exhibited remnant polarization(2Pr) of 26.4µC/cm2 at 470kV/cm.
        4,000원
        6.
        2008.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Ba(Ti,Sn)O3 thin films, for use as dielectrics for MLCCs, were grown from Sn doped BaTiO3 sourcesby e-beam evaporation. The crystalline phase, microstructure, dielectric and electrical properties of films wereinvestigated as a function of the (Ti+Sn)/Ba ratio. When BaTiO3 sources doped with 20~50mol% of Sn wereevaporated, BaSnO3films were grown due to the higher vapor pressure of Ba and Sn than of Ti. However, itwas possible to grow the Ba(Ti,Sn)O3 thin films with ≤15mol% of Sn by co-evaporation of BTS and Ti metalsources. The (Ti+Sn)/Ba and Sn/Ti ratio affected the microstructure and surface roughness of films and thedielectric constant increased with increasing Sn content. The dielectric constant and dissipation factor ofBa(Ti,Sn)O3 thin films with ≤15mol% of Sn showed the range of 120 to 160 and 2.5~5.5% at 1KHz,respectively. The leakage current density of films was order of the 10−9~10−8A/cm2 at 300KV/cm. The researchresults showed that it was feasible to grow the Ba(Ti,Sn)O3 thin films as dielectrics for MLCCs by an e-beamevaporation technique.
        4,000원