Muscle satellite cell (SC) is responsible for postnatal muscle growth, repair, and regeneration. Satellite cell is an im-portant source of multi-potent stem cell process and differentiation into adipogenic, myogenic, and osteoblastogenic. The objective of this study was to identify alter of transcriptome during differentiation in porcine satellite cell and to elevated transcriptome at different stages of postnatal development to gain insight into the differences in differ-entiated PSC. We used RNA-seq technique to investigate the transcriptomes during differentiation in pig muscle. Sequence reads were obtained from Illumina HiSeq2000. Differentially expressed genes (DEG) were detected by EdgeR. Gene ontology (GO) terms are powerful tool for unification among representation genes or products. In study of GO biological terms, functional annotation clustering involved in cell cycle, apoptosis, extracellular matrix, phosphoryla- tion, proteolysis, and cell signaling in differences stage. Taken together, these results would be contributed to a better understanding of muscle biology and processes underlying differentiation. Our results suggest that the source of DEGs could be better understanding of the mechanism of muscle differentiation and transdifferentiation.
Satellite cells were derived from muscular tissue in postnatal pig. Satellite cell is an important to growth and development in animal tissues or organs. However, the progress underlying induced differentiation is not clear. The aim of this study was to evaluate the morphologic and the transcriptome changes in porcine satellite cell (PSC) treated with insulin, rosiglitazone, or dexamethasone respectively. PSC was obtained from postnatal muscle tissue. In study 1, for study the effect of insulin and FBS on the differentiated satellite cells, cells were cultured at absence or presence of insulin treated with FBS. Total RNA was extracted for determining the expression levels of myo-genic PAX3, PAX7, Myf5, MyoD, and myogenin genes by real-time PCR. Myogenic genes decreased expression levels of mRNA in treated with insulin. In study 2, in order to clarify the relationship between rosiglitazone and lipid in differentiated satellite cells, we further examined the effect of FBS on lipid accumulation in the presence or absence of the rosiglitazone and lipid. Significant differences were observed between rosiglitazone and lipid by FBS. The mRNA of FABP4 and PPARγ increased in rosiglitazone treatment. In study 3, we examined the effect of dexame-thasone on osteogenic differentiation in PSC. The mRNA was increased osteoblasotgenic ALP and ON genes treated with dexamethasone in 2% FBS. Dexamethasone induces osteoblastogenesis in differentiated PSC. Taken together, in differentiated PSCs, FABP4 and PPARγ increased to rosiglitazone. Whereas, no differences to FBS and lipid. These results were not comparable with previous reports. Our results suggest that adipogenic, myogenic, and osteoblasto-genic could be isolated from porcine skeletal muscle, and identify culture conditions which optimize proliferation and differentiation formation of PSC.
Muscular satellite cell (SC), which is stem cell of postnatal pig, is an important for study of differentiation into adipogenesis, myogenesis, and osteoblastogenesis. In this study, we isolated and examined from pig muscle tissue to determine capacity in proliferate, differentiate, and expression of various genes. Porcine satellite cells (PSC) were isolated from semimembranosus (SM) muscles of 90∼100 days old pigs according to standard conditions. The cell proliferation increased in multi-potent cell by Masson’s, oil red O, and Alizarin red staining respectively. We per-formed the expression levels of differentiation related genes using real-time PCR. We found that the differentiation into adipocyte increased expression levels of both fatty acid binding protein 4 (FABP4) and peroxisome proliferator- acti-vated receptor gamma (PPARγ) genes (p<0.01). Myocyte increased the expression levels of the myosin heavy chain (MHC), myogenic factor 5 (Myf5), myogenic regulatory factor (MyoD), and Myogenic factor 4 (myogenin) (p<0.01). Osteo-blast increased the expression levels of alkaline phosphatase (ALP) (p<0.01). Finally, porcine satellite cells were indu-ced to differentiate towards adipogenic, myogenic, and osteoblastogenic lineages. Our results suggest that muscle satellite cell in porcine may influence cell fate. Understanding the progression of PSC may lead to improved strat-egies for augmenting meat quality.