검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        2.
        2013.06 구독 인증기관 무료, 개인회원 유료
        The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15. The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15. The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15. The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15. The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
        4,000원
        3.
        2015.06 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to determine the effects of high temperature and deficit irrigation on growth and yield of hot pepper. Hot pepper was subjected to four irrigation treatments: fully irrigation (FI), 10, 20, and 30 days deficit irrigation (DI) combination with high temperature treatment. Control plants were grown natural environment and conventional culture methods. The plant height treated with high temperature was significantly higher than that of control plant. At FI combination with high temperature treatment, growth parameters such as stem diameter, leaf area, fresh and dry weight were the greatest. The yield was the greatest (2,036 kg/10a) under control, DI combination with high temperature treatment decreased by approximately 42% compare with FI combination with high temperature treatment. The number of abnormal fruits was approximately 38/plant under control, which was the smallest and that of 30 days DI combination with high temperature was higher 3.3 times compare with control. Flower abscission and calcium deficiency induced by DI treatments, especially those physiological disorder promoted by increasing DI treatments period. Results indicated that yield of hot pepper reduced by DI treatments, these results suggest that the growers should irrigate to proper soil moisture for preventing reduction of total fruit yield.