Measurement of the physical properties of high-temperature molten salts is important for the efficient design and operation of molten salt reactors (MSR) in which the reactor coolant and nuclear fuel are in a homogeneous liquid state. Although some crucial physical properties such as viscosity, thermal conductivity, density, etc., have been drawing much attention, relative data, especially for molten chloride salts, are scarce. Thus, it is urgent to prepare the viscosity data as one of the key transport properties in thermal hydraulics analysis. However, it is not an easy task to measure the molten salt viscosity with high accuracy due to end effect, a small gap between the chamber and spindle, thermal expansion of the chamber and spindle at high temperatures in a rotational viscometer. Additionally, molten salt temperatures inside furnace are not uniform due to the large temperature gradient inside the chamber, and therefore the assumption of laminar condition can be violated. In this study, geometric factors, which can be a major interference in the torque measurement, were considered for the accurate determination of the viscosity. We established a high-temperature molten salt viscosity measurement system with Brookfield rotational viscometer. KNO3 molten salt was used as a model substance at a temperature range of 650–773 K. In-house designed spindles and chambers were made of corrosion-resistant alumina. Thermal expansion has a significant influence on the size and shape of the chamber and spindle. The effect of thermal expansion on the conventional correction method was examined with temperature variation and distribution. Gap size variation was also investigated in order to improve the accuracy.
A molten salt reactor (MSR) that uses molten salt mixtures as nuclear liquid fuel has recently received much attention due to its inherent safety. Various fluoride and chloride salt mixtures are considered as fluid fuel for MSRs. Among those, NaCl-MgCl2-UCl3 system is the one of the most promising candidates for molten salt fast reactor. The comprehensive information on thermo-physical properties such as density, viscosity, heat capacity and thermal conductivity are fundamental to MSR design development, but experimental data for NaCl-MgCl2-UCl3 system are unknown to the best of our knowledge. In this study, we estimated the thermophysical properties of NaCl-MgCl2-UCl3 system. The properties were calculated by mole fraction additive method using reliable experimental data from pure salt system. Other methods, such as rule of additivity of molar volume for density, modified Dulong-Petit method for heat capacity, and Rao-Turnbull prediction and Ignatieve-Khokolve correlation for thermal conductivity, have also been applied. Estimated values for the properties were compared with each other as well as available binary experimental data.
Density of chloride molten salts is an essential physical property in the reactor core design and thermal-hydraulic design simulation, especially in molten salt reactor (MSR) design currently under development in Korea. NaCl-MgCl2-UCl3 pseudo-ternary system is one of the various candidate chloride-based salt mixtures because it has relatively-low melting point, very low vapor pressure, high thermal conductivity, etc. However, to the best of our knowledge, the density data of NaCl-MgCl2- UCl3 have not yet been measured or published worldwide, and therefore the ballpark figures of the density should be given for the preliminary reactor design. In our present study, the density estimation of NaCl-MgCl2-UCl3 based on the pseudo-binary data, i.e., NaCl-MgCl2, MgCl2-UCl3, and NaCl- UCl3, reported in the literature previously were performed using the Redlich-Kister model. Binary interaction parameter for MgCl2-UCl3 was higher than that for NaCl-MgCl2 and lower than that for NaCl-UCl3. As an example, calculated density of 0.62 NaCl: 0.18 MgCl2: 0.20 UCl3 at 873 K was 2.578 g·cm−3. In our further study, the methodology using Redlich-Kister model will be applied to more complex multicomponent systems and to other physical properties such as viscosity, thermal conductivity, surface tension, etc.
Partial mesophase (PM) pitch precursor was prepared from fluidized catalytic cracking-decant oils (FCC-DO) by chemical reaction in the presence of Br2. The PM pitch heated-treatment at 420℃ for 9 h exhibited the softening point of 297℃ with 23% yield, and 55% anisotropic content. The PM pitch precursor was melt-spun through circular nozzle by pressurized N2, stabilized at 310℃, carbonized at 700℃, 1000℃, and 1200℃. The enough stabilization introduced 16.4% of the oxygen approximately. The stacking height (Lc002) and interlayer spacing (d002) of the as-spun fibers were 4.58 nm and 3.45a and the value became minimum and maximum at 700℃ respectively in the carbonization procedure. The tensile strength increased with an increase in the heat treatment temperature exhibiting highest value of 750 MPa at 1200℃ carbonization.