검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.11 구독 인증기관·개인회원 무료
        Heavy metal wastewater containing cobalt (Co2+) has received more attention as an environment issue, which is released from electroplating processes, battery materials industries, nuclear power plants, etc. Especially, cobalt exposed to high-temperature and high-pressure environment during the operation of a nuclear power plant to form corrosion products and forming a chalk river unidentified deposit (CURD) along with radioactive materials generated in cooling water pipes. Cobalt present in the oxide film is mainly Co-60, which emits radiation and causes increased radiation exposure to workers, and efficient management is essential. In this study, we demonstrated the performance of copper hexacyanoferrate (CuHCF) electrodes in a capacitive deionization (CDI) system for Co2+ ions removal. The structure and chemical status of CuHCF used as an electrode material were characterized, and electrochemical properties were evaluated. This study showed that Co2+ ions could be efficiently removed in aqueous solutions using CuHCF electrodes. It has been experimentally shown that the ion removal mechanism is driven by the insertion of Co2+ ions within the CuHCF lattice channels. The deionization capacities in 20 and 50 mg-Co2+ L-1 aqueous solutions were 141.62 and 156.85 mg g-1, respectively, and the corresponding charge efficiencies (Λ) were 0.55 and 0.68, respectively. Thus, we suggest that an electrochemically driven process using CuHCF can usefully remove Co2+ ions from wastewater.
        2.
        2022.10 구독 인증기관·개인회원 무료
        A simulation model was developed for heavy water pre-enrichment and detritiation by the Combined Electrolysis and Catalytic Exchange (CECE) process. In the CECE process, heavy water enrichment and detritiation are based on the principle that concentrated in to water phase through an isotopic exchange reaction between water vapor and hydrogen gas produced by a water electrolysis. An operational analysis for a liquid phase catalytic exchange column was carried out by the model equations, composed of a material balance and combined equilibrium relationships for a scrubbing and catalyst bed, respectively. As a result of simulation, the optimum flow ratio of water to the rising hydrogen gas in contact with the down-coming water was predicted as the key variables in the separation performance analysis at a given feed flow rate and isotopic composition. From a graphical approach based on this model, the operating conditions can be determined within the range where the operating line does not meet the combined equilibrium line before reaching the specified target concentration.