중고선은 신조선과 달리 시장참여자에게 즉각적인 시장 진출입 기회를 제공하기 때문에 해운산업에서 중요한 시장이라 할 수 있 다. 중고선 거래 시 정확한 선가 추정은 향후 장기적인 자본비용의 부담과 직접적인 관련이 있기 때문에 투자의사결정에서 상당히 중요한 요소가 된다. 기존의 중고선시장과 관련된 연구들은 시장의 효율성검증에 치우쳐 있어 정확한 중고선가 추정을 위한 연구는 부족한 실정이다. 본 연구에서는 중고선박 가치추정에 전통적인 계량모델보다 기존연구에서 시도되지 않았던 인공신경망모델을 새롭게 제안하였다. 문헌연구를 통해 중고선 가격에 영향을 미치는 6개 요인(운임, 신조선가격, 총 선복대비 발주량, 해체선 가격, 선령, 사이즈)을 선정하였고, 데이터는 2016년 1월부터 2018년 12월까지 Clarkson에 보고된 파나막스 중고선의 실거래 기록 366건을 이용하였다. 변수선정을 위하여 상관분석과 단계적 회귀분석 실시한 결과 최종적으로 운임, 선령, 사이즈 3개의 변수가 채택되었다. 모델의 설계는 10분할 교차검증으로 인공신경망모델의 파라미터들을 추정하여 진행되었다. 인공신경망 모델의 중고선 가치추정치를 단순 단계적 회귀모형과 비교한 결과 인공신경망모델의 성능이 우수함을 확인하였다. 이 연구는 중고선 선가추정에 미치는 요인들에 대한 통계적인 검증, 성능개선을 위한 기계학습기반의 인공신경망 모델 활용이라는 측면에서 차별적 의미가 있다. 또한 정확한 선가 추정이 요구되는 실무에서 통계적인 합리성과 결과의 정확성이 동시에 만족되는 과학적 모델을 제시하여 실무적으로도 도움이 될 것으로 기대한다.
운임시장의 심한 변동성과 시계열 데이터의 불안정성으로 해운시황 예측에 대한 연구가 큰 성과를 내지 못하고 있지만 최근 대표적인 비선형 모델인 기계학습모델을 적용한 연구들이 활발히 진행되고 있다. 대부분의 기존 연구가 계량모델의 설계단계에서 입력변수에 해당하는 요인들을 기존 문헌연구와 연구자의 직관에 의존하여 선정했기 때문에 요인선정에 대한 체계적인 연구가 필요하다. 본 연구에서는 케이프선 운임을 대상으로 단계적 회귀모형과 랜덤포레스트모델을 이용하여 중요 영향요인을 분석하였다. 해운시장에서 비교적 단순한 수급구조를 가져 요인파악이 용이한 케이프선 운임을 대상으로 하였으며 총 16개의 수급요인들을 사전 추출하였다. 요인간의 상호관련성을 파악하여 단계적 회귀는 8개 요인, 랜덤포레스트는 10개 요인을 분석대상으로 선정하였으며 선정된 변수를 입력변수로 하여 예측한 결과를 비교하였다. 랜덤포레스트의 예측성능이 아주 우수하였는데 수요요인이 주로 선정된 단계적 회귀분석과는 달리 공급요인이 비중 있게 선정되었기 때문인 것으로 판단된다. 본 연구는 운임예측 연구에 있어 운임결정요인에 대한 과학적인 근거를 마련하였으며 이를 위해 기계학습 기반의 모델을 활용하였다는데 연구적 의의가 있다. 또한 시장정보의 분석에 있어 실무자들이 어떤 변수에 중점을 두어야 하는지에 대해 합리적 근거를 제시한 측면에서 해운기업의 의사결정에 실질적 도움이 될 것으로 기대된다.
Supramax bulk carriers cover a wide range of ocean transportation requirements, from major to minor bulk cargoes. Market forecasting for this segment has posed a challenge to researchers, due to complexity involved, on the demand side of the forecasting model. This paper addresses this issue by using technical indicators as input features, instead of complicated supply-demand variables. Artificial neural networks (ANN), one of the most popular machine-learning tools, were used to replace classical time-series models. Results revealed that ANN outperformed the benchmark binomial logistic regression model, and predicted direction of the spot market with more than 70% accuracy. Results obtained in this paper, can enable chartering desks to make better short-term chartering decisions.
The core decisions of bulk shipping businesses can be summarized as the timing and the choice of period for which carrying capacity is traded. In particular, frequent decisions to trade freight either with repeated spot transactions or with a one-off long-term deal critically impact business performance. Even though a variety of freight trading strategies can be employed to facilitate the decisions, chartering practitioners have not been active in utilizing these strategies, and academic research has rarely proposed applicable solutions. The specific properties of freight as a tradable commodity are not properly reflected in existing studies, and limitations have been reported in their application to the real world. This research focused on the establishment of applicable freight trading strategies by taking into account two properties of freight: time perishability and term-dependant pricing. In addition to traditional trading strategies, artificial neural networks were applied for the first time to the test of freight trading strategies. The performances of the trading strategies were measured and compared to produce a remarkable outperformance of the ANN. This research is expected to make a significant contribution to chartering practices by enhancing the quality of chartering decisions and eventually enabling the effective management of freight rate risk. In addition to methodological expansion, the result will propose a way to approach the controversial issue of freight market efficiency.