검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2022.10 구독 인증기관·개인회원 무료
        To transport radioactive waste generated during the decommissioning of Kori Unit 1, transport containers of various sizes are being developed. Since these radioactive decommissioning waste transport containers are larger than the specifications of the existing IP-2 type transport containers, which are for operational radioactive waste, design of the CHEONG-JEONG-NURI needs to be changed when transporting them to disposal facility using the CHEONG-JEONG-NURI, which carries operational radioactive waste. In this study, design changes of the CHEONG-JEONG-NURI, cargo hold modification plan for efficient loading of radioactive decommissioning waste transport containers and radioactive decommissioning waste container loading arrangement (plan) were evaluated during the design life period (year 2034). First, as only the IP-2 type transport container with a weight of 7.5 tons and size of 1.6 m (W) × 3.4 m (L) × 1.2m (H) can be loaded in the cargo hold, if only the decommissioning radioactive waste containers are to be loaded and transported, cargo hold needs to be reinforced. Second, when both the radioactive decommissioning waste transport container of the same size as the current operating radioactive waste transport container, and the radioactive decommissioning waste transport container of the same size as the ISO-type transport container are to be loaded in the cargo hold of the CHEONG-JEONG-NURI and transported, the overall design changes (cargo hold size and load reinforcement) are required. Third, since the safe working load of the CHEONG-JEONG-NURI crane is 12.5-tons, it shall be replaced with a ship crane of 35-tons or more to handle the decommissioning radioactive waste container smoothly, or a gantry crane used in general port facilities shall be installed. When replacing with a ship crane of 35-tons or more, ship buoyancy, ship stability, and ship structural safety shall be considered. The possibility of moving in all 4 directions for smooth operation, and the possibility of lifting the transport container to a position higher than the height of the CHEONG -JEONG-NURI shall be considered. Loading and transporting all decommissioning radioactive waste containers, which are the same size as IP-2 and ISO-type transport containers, in the cargo hold of the CHEONG-JEONG-NURI is uneconomical due to the need for overall design changes (cargo size and load reinforcement, etc.). Also, delay in delivery of the operation wastes is expected due to a long-term design change period. Therefore, it is considered reasonable to load and transport only the decommissioning radioactive waste transport container, which is the same size as the IP-2 transport container, in the cargo hold.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The design life of the radioactive waste carrier, the CHEONG JEONG NURI, is in the year 2034, when the decommissioning of Kori Unit 1 is expected. As only IP-2 type transport containers (7.5- tons, 1.6 m (W) × 3.4 m (L) × 1.2 m (H)) can be loaded onto the CHEONG-JEONG-NURI, the radioactive decommissioning waste (RDW) transport containers neither of 35-tons maximum weight nor ISO type can be accommodated. Accordingly, either a new vessel (NV) to replace the CHEONGJEONG- NURI or a change in the loading dock design of the CHEONG-JEONG-NURI is required. In this study, the necessity of building a NV capable of accommodating the issued containers above is analyzed focusing, (1) the estimated building and operating costs of the NV, and (2) the economic feasibility of the NV ‘s RDW transportation scenarios. Among bulk carriers, the CHEONG-JEONG-NURI was designed as handy-size ship type. It is operated reflecting various design requirements to satisfy the domestic/international legal requirements. To estimate the cost of the NV, the same vessel type and design criteria of the CHEONG-JEONGNURI were considered. The shipping price information of the Korea Ocean Business Corporation, as of August 2022, the building cost of bulk carrier Handysize (building NV type) is about USD 30 million. Considering domestic/overseas variables, such as future labor costs, international inflation, interest rate hike, etc., the building costs are expected to continuously rise. Furthermore, vessel operation costs of crew labor, vessel, fuel, and insurance are incurred separately. Due to the increase in oil price, and wages of special positions, such as general seafarers and radiation safety managers, the NV’s operating cost is expected to be about KRW 3.8 billion every year, which is about KRW 1.1 billion higher than that of the CHEONG-JEONG-NURI. The expected total cost of building and operating the NV is about KRW 65 billion. Assuming the repayment period of the NV building cost is the same as that of the CHEONG-JEONG-NURI building cost reimbursement agency and analyzing the economic feasibility of the transport scenario of the NV built by adding up about KRW 3.8 billion of the operating cost, cost about KRW 880 million per voyage of the NV built is expected, which being KRW 620 million more than the current cost (KRW 260 million) per trip of the CHEONG-JEONG-NURI. Therefore, transporting the RDW to the disposal facility through sustainable use of the CHEONGJEONG- NURI (considering design life extension and design change) is evaluated as more appropriate than building NV.
        3.
        2022.05 구독 인증기관·개인회원 무료
        Radioactive waste generated during the decommissioning of Kori Unit 1 can be packaged in a transport container under development and transported to a disposal facility by sea transport or land transport. In this study, the cost of each transport method was evaluated by considering the methods of land transport, sea transport, and parallel transport of the radioactive waste dismantled at Kori Unit 1. In evaluating the shipping cost, the shipping cost was evaluated by assuming the construction of a new ship without considering shipping by CHEONG JEONG NURI, which is currently carrying operational waste. Since the cargo hold of CHEONG JEONG NURI was built to fit the existing operating waste transport container and is not suitable for transporting the transport container currently under development, sea transport using CHEONG JEONG NURI was excluded in this paper. In the case of on-road transportation, the final fare for each distance was calculated in accordance with the Enforcement Decree of the Freight Vehicle Transportation Business Act, and the cost of onroad transportation was evaluated by estimating the labor cost of the input manpower required for onroad transportation. The cost of on-road transportation was estimated to be approximately KRW 510 million, the product of the total number of transports 459 times the sum of the cost of transportation vehicle freight cost of about KRW 720,000 and the labor cost of input personnel of KRW 380,000. It is difficult to predict the cost of building a new ship at this point, as the cost of building new ship is determined by the cost of number of items such as ship design specifications and material prices, labor costs, and finance costs at the time of construction. Accordingly, considering the 2% annual inflation rate based on the shipbuilding cost (about KRW 26 billion) and financing cost (about KRW 12 billion) at the time of construction of the CHEONG JEONG NURI (2005 yr.), decommissioning of Kori Unit 1 (2025 yr.) construction cost finance cost was estimated and evaluated. According to the result of comparing the transport cost for each transport scenario, land transport is about 510 million won, which is advantageous in terms of economic feasibility compared to the sea transport scenario. However, when transporting by land, it is disadvantageous in terms of acceptability of residents because it is transported multiple times on general roads. The cost of building a new ship is about KRW 56.4 billion, which is disadvantageous in terms of the cost of transporting waste from the dismantling of Kori Unit 1. But, in the future, cost reduction can be expected if waste materials issued when dismantling nuclear power plants are transported.