검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        2.
        2023.11 구독 인증기관·개인회원 무료
        To investigate the mechanical integrity of spent nuclear fuel, the failure behavior of the cladding tube was examined under accident conditions. According to the SNL report, the failure behavior of cladding can be broadly classified into two types. The first is failure due to bending load caused by falling. The second is failure due to pinch load caused by space grid. In this study, mechanical integrity was evaluated through the stress intensity factor applied to the crack in failure behavior due to bending load. Since the exact value of the impact load due to fall was unknown, the load was applied by increasing the value up to 200 G in 20 G increments. The size of the crack is an important input variable, and 300 um was given by referring to the EPRI report, and the elastic modulus, a material property that determines the stress field, was given 75.22 GPa by referring to the FRAPCON code. Since the relationship between the direction of stress and the direction of the crack is also a major variable, simulations were conducted for both cracks perpendicular to and parallel to the stress direction. It was confirmed that at a load of 200 G, when the crack was parallel to the stress direction, stress concentration did not occur and had a very low stress intensity factor 0.01 􀜯􀜲􀜽√􀝉. When perpendicular to the direction of stress, the stress intensity factor showed a value of 1 􀜯􀜲􀜽√􀝉. However, considering that the critical value of the stress intensity factor due to hydride is 5 􀜯􀜲􀜽√􀝉, it can be seen that perpendicular result also ensures the mechanical integrity of the cladding.
        3.
        2023.05 구독 인증기관·개인회원 무료
        Transport packages have been developed to transport the decommissioning waste from the nuclear power plant. The packages are classified with Type IP-2 package. The IAEA requirements for Type IP-2 packages include that a free drop test should be performed for normal conditions of transport. In this study, drop tests of the packages were performed to prove the structural integrity and to verify the reliability of the analysis results by comparing the test and analysis results. Half-scale models were used for the drop tests and drop position was considered as 0.3 m oblique drop on packages weighing more than 15 tons. The strain and impact acceleration data were obtained to verify the reliability of the analysis results. Before and after the drop tests, radiation shielding tests were performed to confirm that the dose rate increase was within 20% at the external surface of the package. Also, measurement of bolt torque, and visual inspection were performed to confirm the loss or dispersion of the radioactive contents. After each drop test, slight deformations occurred in some packages. However, there was no loss of pretension in the lid bolts and the shielding thickness was not reduced for metal shields. In the package with concrete shield, the surface dose rate did not increase and there was no cracks or damage to the concrete. Therefore, the transport packages met the legal requirements (no more than a 20% increase of radiation level and no loss or dispersion of radioactive contents). Safety verifications were performed using the measured strain and acceleration data from the test, and the appropriate conservatism for the analysis results and the validity of the analysis model were confirmed. Therefore, it was found that the structural integrity of the packages was maintained under the drop test conditions. The results of this study were used as design data of the transport packages, and the packages will be used in the NPP decommissioning project in the future.
        4.
        2023.05 구독 인증기관·개인회원 무료
        Research on the safety of nuclear spent fuel has been heavily experimented and modelled from a mechanical perspective. The issues of corrosion, irradiation creep, hydride and hydrogen embrittlement have been addressed more than two decades since the early 2000s. Among these degradation behavior, hydrogen embrittlement and hydride reorientation have been the most important topics for establishing the integrity of nuclear spent fuel and have been studied in depth. In order to assess the safety of spent nuclear fuel, firstly, it is necessary to establish the safety criteria in all nuclear cycle, i.e., the failure criteria guidelines for nuclear fuel assemblies and nuclear fuel rods, and then examine the safety analysis. The contents of U.S.NRC Regulations, Title 10 General, Chapter 1 Code of Federal Regulation (CFR), Part 50, 71 and 72, describe the safety criteria for the safety assessment of nuclear fuel assemblies and nuclear fuel rods. In this study, technically important points in safety analysis on nuclear fuel are checked through the reference of those NRC regulation. As result, we confirmed that the safety assessment of nuclear fuel after 20 years of interim storage is now being tested by ORNL and PNNL. There are not quantitative criteria related to material safety. However qualitative criteria which is dependent on environmentally condition describe the safety analysis. There is some literature study about DBTT, yield stress, ultimate tensile strength, flexural rigidity data. In FRAPCON code Modelling of yield strength and creep had been established, but radial hydride or hydride reorientation has not considered.
        5.
        2022.10 구독 인증기관·개인회원 무료
        Waste containers for packaging, transportation and disposal of NPP (Nuclear Power Plant) decommissioning wastes are being developed. In this study, drop tests were conducted to prove the safety of containers for packaging of the wastes and to verify the reliability of the analysis results by comparing the test and analysis results. The drop height of the waste containers was considered to be 30 mm, which is the maximum lifting speed of a 50 tons crane in the waste treatment facility converted to the drop height. Drop orientation of the containers was considered for bottom-end on drop. The impact acceleration and strain data were obtained to verify the reliability of the analysis results. Before and after the drop tests, measurement of the dose rate and the radiographic testing for concrete wall, and measurement of the wall thickness of steel plate were conducted to evaluate the radiation shielding integrity. Also, measurement of bolt torque, and visual inspection were conducted to evaluate the loss or dispersion of radioactive contents. After the drop tests, the radiation dose rate on the container surface did not increase by more than 20%, and there was no crack in the concrete. In addition, the thickness of the steel plate did not change within the measurement error. Therefore, the radiation shielding integrity of the container was maintained. After the drop tests, the lid bolts were not damaged and there was no loss of pretension in the lid bolts. In addition, there was no loss or dispersion of the contents as a result of visual inspection. In order to prove the reliability of the drop analysis results, safety verifications were performed using the drop test results, and the appropriate conservatism for the analysis results and the validity of the analysis model were confirmed. Therefore, the structural integrity of the waste containers was maintained under the drop test conditions.