This study aims to develop a comprehensive predictive model for Digital Quality Management (DQM) and to analyze the impact of various quality activities on different levels of DQM. By employing the Classification And Regression Tree (CART) methodology, we are able to present predictive scenarios that elucidate how varying quantitative levels of quality activities influence the five major categories of DQM. The findings reveal that the operation level of quality circles and the promotion level of suggestion systems are pivotal in enhancing DQM levels. Furthermore, the study emphasizes that an effective reward system is crucial to maximizing the effectiveness of these quality activities. Through a quantitative approach, this study demonstrates that for ventures and small-medium enterprises, expanding suggestion systems and implementing robust reward mechanisms can significantly improve DQM levels, particularly when the operation of quality circles is challenging. The research provides valuable insights, indicating that even in the absence of fully operational quality circles, other mechanisms can still drive substantial improvements in DQM. These results are particularly relevant in the context of digital transformation, offering practical guidelines for enterprises to establish and refine their quality management strategies. By focusing on suggestion systems and rewards, businesses can effectively navigate the complexities of digital transformation and achieve higher levels of quality management.
Metarhizium은 대표적인 곤충병원성 진균 중 하나로, 종에 따라 매우 다양한 곤충에게 병원성을 일으키는 폭 넓은 기주범위를 형성한다. 이들이 주로 생성하는 것으로 알려진 destruxins (DTXs)이라는 2차 대사산물은 살충 활성 뿐만 아니라 항바이러스, 항증식, 항암 등 다양한 분야에서 효능이 연구되고 있어, 해당 물질에 대한 관심이 집중되고 있다. 살충 물질로서의 DTXs는 여러 곤충에 있어 병원성을 나타내는 것이 확인되었으나, 해충 으로서 전 세계적으로 심각한 경제적 피해를 일으킴과 동시에, 화학 살충제 저항성 문제가 야기되고 있는 목화진 딧물에 대해서는 아직 DTXs의 역할이 연구되지 않고 있는 실정이다. 본 연구에서는 목화진딧물에 대해 곤충병원 성 진균 Metarhizium spp.의 병원성 발현에 DTXs가 미치는 역할을 간접적으로 확인하기 위해, qPCR을 활용하여 진균 처리 후 목화진딧물 사망 시간과 관련하여 충체 내 DTX 합성효소의 발현을 비교 분석하였다.
Mycoviruses are a group of viruses that infect filamentous fungi. While most hosts infected with mycoviruses do not show any symptoms. In some cases, mycoviruses induce various phenotypic changes include alterations in morphology, drug resistance, pathogenicity, virulence, sporulation, and growth. Entomopathogenic fungi are one of the integrated pest management agents as an alternative to conventional insecticides. Mycoviruses have the potential as supportive agents, enhancing the efficiency of the insecticidal activity of the fungi. Studies about mycoviruses themselves and their interaction with their hosts, especially entomopathogenic fungi, are needed to realize their full potential. In this work, the sequence of the dsRNA element isolated from the entomopathogenic fungus Metarhizium pinghaense 4-2 strain was determined. Through this study, we report the sequence of a dsRNA virus isolated from the Metarhizium pinghaense for the first time. In further studies, the ORF of the mycovirus that induces a phenotype change in the host will be researched.
마이코바이러스는 곰팡이를 감염시키는 바이러스로 자낭균류, 담자균류 및 난균류에서 주로 발견되며 일부 의 경우 곰팡이의 표현형에 영향을 끼치는 것으로 알려져 있다. 이번 연구에서는 대한민국 토양 샘플에서 분리된 65개의 자낭균류 및 접합균류 균주의 전체 핵산을 추출하고, 전기영동을 통해 바이러스 특이적 밴드를 스크리닝 하였다. 스크리닝 결과 65개의 균주 중에서 Tolypocladium spp. 균주 2개와 Marquandomyces marquandii 균주 1개에서 바이러스 특이적 밴드를 발견하였다. 그 후, Cellulose Chromatography를 이용하여 double-stranded RNA 를 분리하고 DNase I 및 S1 Nuclease 처리를 통해 DNA와 single-stranded RNA를 제거하여, Tolypocladium sp. 균주 1개와 Marquandomyces marquandii 균주에서 발견한 특이적 밴드가 dsRNA임을 확인하였다. 추후 virus-free isogenic line을 확보하여 virus 유무에 따른 표현형 변화를 확인하고, 마이코바이러스와 곰팡이 간의 상호작용에 관해 연구할 계획이다.
Urbanization is a driving force of global biodiversity changes, and species that successfully adapt to city environments can become pests with the assistance of human factors. Here we present the first genomic data of Plecia longiforceps, an invasive pest exhibiting intensive outbreaks in the Seoul Metropolitan Area of Korea. HiFi and Pore-C sequencing data were used to construct a highly continuous genome assembly with a total size of 707 Mb and 8 major pseudochromosomes. Gene annotation using transcriptome data and ab initio predictions revealed significant numbers of genes related to detoxification and heat tolerance. Comparison to the Bibio marci genome showed high levels of synteny with some regions of chromosomal rearrangement. Our data will serve as an essential resource for population and functional genomic studies on dispersal and outbreaks of P. longiforceps, and facilitate research on eco-evolutionary processes of dipterans in urbanizing habitats.
Aphids are well-known insect pests that, due to their feeding habits, affect various crops' productivity and marketability. Additionally, they cause significant damage worldwide as vectors of viruses. Chemical pesticides are widely used to control these agricultural pests. However, due to resistance to various chemical pesticides, pest control is becoming difficult in agricultural environments. Entomopathogenic fungi such as the genus Metarhizium and Beauveria are being extensively researched as alternatives to these chemical pesticides. In this study, the mycological properties of isolated from soil Metarhizium pemphigi IPBL-H and the insecticidal activity of this strain against Myzus persicae and Aphis gossypii were evaluated for potential of development as a biopesticide.
Despite having enabled insects to become the most abundant and successful group on Earth, wings have been lost in numerous insect lineages, including Orthoptera. Melanoplinae, a subfamily that includes over 100 genera and more than 800 species in Acrididae, exhibits various wing-types and dispersal abilities. Some species possess extensive flight capabilities with long wings, while many groups that inhabit alpine environments tend to reduce their wings and dispersal ability. In order to infer the evolutionary history of Melanoplinae and their wings, we conducted molecular phylogenetic research. We established the phylogeny using seven mitochondrial (Cox1, Cox2, CytB, Nad2, Nad5, 12S and 16S) and two nuclear genes (H3 and Wg) for 139 taxa. By investigating the wing types in Melanoplinae, we estimated the ancestral state of the wings and traced their evolutionary history. Our results present that loss and recovery of wings occurred multiple times within Melanoplinae, showing distinct histories across inner taxa within the subfamily.
Rhaphidophoridae (Orthoptera: Ensifera), commonly known as cave crickets, are a wingless family and considered the most ancient lineage within Tettigoniidea. However, previous molecular phylogenetic studies and morphological hypotheses have shown inconsistencies. Although their fossils have been found in Baltic amber, their systematic placement remains unrevealed. This study reconstructed a comprehensive phylogeny integrating both extant and fossil lineages. Initially, we revealed relationships within extant lineages through molecular phylogenetics including all extant subfamilies for the first time. Subsequently, using a cladistic approach based on morphology, we confirmed the systematic position of fossil taxa †Protroglophilinae with a report of a new species. Integrating molecular and morphological phylogeney by total evidence tip-dating, we present the comprehensive phylogeny of Rhaphidophoridae considering both extant and fossil groups.
Flower chafers (Coleoptera: Scarabaeidae: Cetoniinae) are globally distributed, comprising approximately 4,000 described species. They primarily feed on nectar and sap of deciduous trees. The larvae exhibit the unique characteristic of crawling on their backs, distinguishing them from other scarabs. Additionally, the majority of flower chafers fly with their elytra closed, unlike other scarabs that fly with fully opened wings. Šípek et al. (2016) conducted the first molecular phylogenetic study to investigate their phylogenetic relationships and characters of elytra related to the flight mode. Building upon this study, we infer the diversification times and rates of Cetoniinae and its subgroups, and reconstruct the evolutionary process of flight mode transformation. Furthermore, we discuss the current limitations and future directions of this topic.
If radioactive plumes are released outside due to loss of containment building integrity during a nuclear power plant accident, these materials might travel with the wind, affecting both the surrounding environment and neighboring countries. In China, most nuclear power plants are located on the eastern coast. Consequently, a radioactive plume generated during an accident could negatively impact even the western part of the Korean Peninsula due to westerly winds. To detect such problems early, respond quickly, and protect residents, a system that can monitor aerial radiation under normal conditions is needed. Additionally, a detection system that can operate in real-time in an emergencies conditions is required. The current method for aerial radiation measurement takes environmental radiation data from a monitoring post 1.5 m above the ground and converts it to altitude. To measure actual aerial radiation, an expansive area is surveyed by aircraft. However, this approach is both time-consuming and expensive. Thus, to monitor radioactive plumes influenced by environmental factors like wind, we need a radiation detector that can gauge both radioactivity and directionality. In this study, we developed a radiation detector capable of assessing both the radioactivity and directionality of a radioactive plume and conducted its performance evaluation. We miniaturized the radiation detector using a CZT (Cadmium Zinc Telluride) sensor, enabling its mounting on unmanned aerial vehicles like drones. It is configured with multi-channels to measure directionality of a radioactive plumes. For performance evaluation, we positioned two-channel CZT sensors at 90 degrees and measured the energy spectrum for angle and distance using a disk-type radioactive isotope. Using this method, we compared and analyzed the directionality performance of the multi-channel radiation detector. We also confirmed its capability to discern specific radioactivity information and nuclide types in actual radioactive plumes. Our future research direction involves mounting the multi-channel radiation detector on a drone. We aim to gather actual aerial radiation data from sensors positioned in various directions.
Cryptotympana atrata belongs to the family Cicadidae, has long been recognized as a damaging plant-sucking pest, and is distributed in East Asian countries. In addition, their cries cause direct harm to us through noise pollution and also reported twig damage in the forest environments. In this study, we isolated strains of the entomopathogenic fungus Metarhizium that occurred from C. atrata collected this year. Here, we provide the morphological character and molecular phylogenetic relationship of this species. This is the first record of the entomopathogenic fungus Metarhizium viridulum isolated from C. atrata in Korea and provides a candidate strain with potential use for biological agents.
This study was aimed to isolate bacterial inoculants producing chitinase and evaluate their application effects on corn silage. Four corn silages were collected from four beef cattle farms to serve as the sources of bacterial inoculants. All isolates were tested against Fusarium graminearum head blight fungus MHGNU F132 to confirm their antifungal effects. The enzyme activities (carboxylesterase and chitinase) were also measured to isolate the bacterial inoculant. Based on the activities of anti-head blight fungus, carboxylesterase, and chitinase, L. buchneri L11-1 and L. paracasei L9-3 were subjected to silage production. Corn forage (cv. Gwangpyeongok) was ensiled into a 10 L mini silo (5 kg) in quadruplication for 90 days. A 2 × 2 factorial design consists of F. graminearum contamination at 1.0104 cfu/g (UCT (no contamination) vs. CT (contamination)) and inoculant application at 2.1 × 105 cfu/g (CON (no inoculant) vs. INO (inoculant)) used in this study. After 90 days of ensiling, the contents of CP, NDF, and ADF increased (p<0.05) by F. graminearum contamination, while IVDMD, acetate, and aerobic stability decreased (p<0.05). Meanwhile, aerobic stability decreased (p<0.05) by inoculant application. There were interaction effects (p<0.05) on IVNDFD, NH3-N, LAB, and yeast, which were highest in UCT-INO, UCT-CON, CT-INO, and CT-CON & INO, respectively. In conclusion, this study found that mold contamination could negatively impact silage quality, but isolated inoculants had limited effects on IVNDFD and yeast.
As platforms become primary decision making tools, platforms for decision have been introduced to improve quality of decision results. Because, decision platforms applied augmented decision-making process which uses experiences and feedback of users. This process creates a variety of alternatives tailored for users’ abilities and characteristics. However, platform users choose alternatives before considering significant quality factors based on securing decision quality. In real world, platform managers use an algorithm that distorts appropriate alternatives for their commercial benefits. For improving quality of decision-making, preceding researches approach trying to increase rational decision -making ability based on experiences and feedback. In order to overcome bounded rationality, users interact with the machine to approach the optional situation. Differentiated from previous studies, our study focused more on characteristics of users while they use decision platforms. This study investigated the impact of quality factors on decision-making using platforms, the dimensions of systematic factors and user characteristics. Systematic factors such as platform reliability, data quality, and user characteristics such as user abilities and biases were selected, and measuring variables which trust, satisfaction, and loyalty of decision platforms were selected. Based on these quality factors, a structural equation research model was created. A survey was conducted with 391 participants using a 7-point Likert scale. The hypothesis that quality factors affect trust was proved to be valid through path analysis of the structural equation model. The key findings indicate that platform reliability, data quality, user abilities, and biases affect the trust, satisfaction and loyalty. Among the quality factors, group bias of users affects significantly trust of decision platforms. We suggest that quality factors of decision platform consist of experience-based and feedback-based decision-making with the platform's network effect. Through this study, the theories of decision-making are empirically tested and the academic scope of platform-based decision-making has been further developed.
Mucosa-associated lymphoid tissue (MALT) lymphoma (ML) is a type of non-Hodgkin’s lymphoma involving MALT, commonly the stomach or salivary glands, although virtually any mucosal site can be affected. ML originates from B cells in the marginal zone of MALT, and is also called extranodal marginal zone B cell lymphoma. It is a slow-growing cancer that usually responds well to treatment. A 59-year-old female presented with a 1-day history of quadriparesis and dysarthria. Up arrival at the hospital, motor power in the right upper and lower extremities was grade 3/5 according to the Medical Research Council scale, while that in the left leg was 4/5. The patient had been diagnosed with gastric ML 1 year prior, and had received antibiotics during the previous 2 weeks. The emergency magnetic resonance imaging of the brain performed at the time of presentation showed multifocal embolic infarction in the cerebral hemisphere bilaterally, which did not have a cardiac origin. Magnetic resonance angiography revealed no stenotic or occlusive lesions. Secondary prophylaxis with daily administration of 300 mg aspirin was prescribed. The patient was discharged with residual right hemiparesis 2 weeks after the onset of symptoms. Herein, we present a rare case of multifocal cerebral infarction in a gastric ML patient.