검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        4.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        This study was conducted to develop gibberellin treatment technique to enhance flower initiation in Aquilegia japonica Nakai & H. Hara. Seedlings were planted in 12㎝-diameter pots on October 2016 and grown in green house. Ambient temperature in the green house was set at minimum 15℃ during day and night to suppress flower initiation at cold temperature condition. Two different types of gibberellin, GA3 and GA4+7, at 4 different concentration levels 100, 200, 400 and 600 ㎎/L, were tested in this study. Gibberellin was sprayed first at planting and secondly at 1-week after planting. Ten to fifteen ㎖ of gibberellin was sprayed for each pot. Plant height and petiole length were elongated by both gibberellin types, flowering was more enhanced by GA3 (91.7∼100%) compared to of GA4+7. However, abnormal flower was less observed in GA3 treatment (0∼16.7%) than GA4+7. Number of flower stalks per plant ranged from 1.9 to 2.5. Number of flowers per plant ranged from 6.8 to 10.3. Differences in flowering characteristics between treatments were statistically significant. Optimal gibberellin treatment to enhance flower initiation in A. japonica Nakai & H. Hara substituting cold treatment was GA3 at the concentration between 400 ㎎/L to 600 ㎎/L.
        5.
        2018.11 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        An alternative method for team diversity studies is to examine demographic faultlines. A concept of demographic faultline enables us to better understand team dynamics with multidimensional diversity. This study suggests the demographic faultline as a new situational factorto influence the relationship between leader teamwork behaviors and a climate of support for innovation. When subgroups divided by demographic faultline are homogeneous within them and heterogeneous between them, the homogeneity may increase intimacy in each subgroup while the heterogeneity may increase exclusiveness between those subgroups. We argued that a leader could play an important role to build a cooperative relationship between faultline-based subgroups and highlight positive aspects of developing and maintaining subgroups in organizations. With a sample of 81 teams (558 employees), it was examined how leader teamwork behaviors would affect a team-level climate of support for innovation and how this relationship would be moderated by each team’s demographic faultline (gender, age, and educational specialty). As predicted, it was found that there was a significant positive relationship between each leader’s teamwork behaviors and each team’s climate of support for innovation. In addition, this relationship was stronger for teams with strong faultline than with weak faultline. Our findings and their implications were further discussed.
        6.
        2015.07 서비스 종료(열람 제한)
        The vascular system of plants consists of two conducting tissues, xylem and phloem, which differentiate from procambium cells. Xylem serves as a transporting system for water and signaling molecules and is formed by sequential developmental processes, including cell division/expansion, secondary cell wall deposition, vacuole collapse, and programmed cell death (PCD). PCD during xylem differentiation is accomplished by degradation of cytoplasmic constituents, and it is required for the formation of hollow vessels, known as tracheary elements (TEs). Our recent study revealed that the small GTPase RabG3b acts as a regulator of TE differentiation through its autophagic activation. By using an Arabidopsis in vitro cell culture system, we showed that autophagy is activated during TE differentiation. Overexpression of a constitutively active RabG3b (RabG3bCA) significantly enhances both autophagy and TE differentiation, which are consistently suppressed in transgenic plants overexpressing a dominant negative form (RabG3bDN) or RabG3bRNAi (RabG3bRNAi), a brassinosteroidinsensitive mutant bri1-301, and an autophagy mutant atg5-1. Wood (called secondary xylem) is the most abundant biomass produced by land plants including Populus and Eucalyptus, and therefore is considered to be one of the most cost-effective and renewable bioenergy resources. In an attempt to enhance xylem differentiation and thus to improve biomass traits in poplars, we generated transgenic poplars overexpressing the RabG3bCA form. As notable phenotypes, both stem height and diameter were increased and xylem area in vascular bundles was significantly expanded in RabG3bCA transgenic poplars compared to control plants. Taken together, these results demonstrate that RabG3b regulates xylem differentiation in both Arabidopsis and Populus. This study enhances our understanding of biological mechanisms underlying wood formation and serve as a framework to engineer the quality and quantity of wood as useful biomass.