In contemporary global warfare, the significance and imperative of air transportation have been steadily growing. The Republic of Korea Air Force currently operates only light and medium-sized military cargo planes, but does not have a heavy one. The current air transportation capability is limited to meet various present and future air transport needs due to lack of performance such as payload, range, cruise speed and altitude. The problem of population cliffs and lack of airplane parking space must also be addressed. These problems can be solved through the introduction of heavy cargo planes. Until now, most studies on the need of heavy cargo plane and increasing air transport capability have focused on the necessity. Some of them suggested specific quantity and model but have not provided scientific evidence. In this study, the appropriate ratio of heavy cargo plane suitable for the Korea's national power was calculated using principal component analysis and cluster analysis. In addition, an optimization model was established to maximize air transport capability considering realistic constraints. Finally we analyze the results of optimization model and compare two alternatives for force structure.
Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.
Abscission is an important developmental process used to shed organs such as leaves, flowers and fruits. Despite the detailed characterization of growth dynamics and hormonal balance during the early steps of fruit development, the molecular aspects remain unclear. Abscission of young fruit occurs by separation of cells in anatomically distinct regions between the pedicel and junction. Differences of gene expression between central pedicel and lateral pedicel were investigated by NGS. Partial cDNAs from 15 clones from both the central pedicel and lateral pedicel were selected for nucleotide sequence determination and homology searches, and 12 clones were subsequently selected for further analysis. In preliminary series of Real Time PCR analysis, 9 genes were confirmed as showing a higher expression level in lateral pedicel than in central pedicel. Many of these genes are expressed in a central or lateral pedicel in specific manner, and the expression profiles of the representative genes were confirmed. To clarify the mechanism of MdIAA14 transcription factor gene underlying abscission zone development, we are investigating the expression patterns between central and lateral pedicels in different apple cultivar using real-time PCR and constructing the vector for transformation into apple.