검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 22

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        During wartime, the operation of engineering equipment plays a pivotal role in bolstering the combat prowess of military units. To fully harness this combat potential, it is imperative to provide efficient support precisely when and where it is needed most. While previous research has predominantly focused on optimizing equipment combinations to expedite individual mission performance, our model considers routing challenges encompassing multiple missions and temporal constraints. We implement a comprehensive analysis of potential wartime missions and developed a routing model for the operation of engineering equipment that takes into account multiple missions and their respective time windows of required start and completion time. Our approach focused on two primary objectives: maximizing overall capability and minimizing mission duration, all while adhering to a diverse set of constraints, including mission requirements, equipment availability, geographical locations, and time constraints.
        4,000원
        2.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In contemporary global warfare, the significance and imperative of air transportation have been steadily growing. The Republic of Korea Air Force currently operates only light and medium-sized military cargo planes, but does not have a heavy one. The current air transportation capability is limited to meet various present and future air transport needs due to lack of performance such as payload, range, cruise speed and altitude. The problem of population cliffs and lack of airplane parking space must also be addressed. These problems can be solved through the introduction of heavy cargo planes. Until now, most studies on the need of heavy cargo plane and increasing air transport capability have focused on the necessity. Some of them suggested specific quantity and model but have not provided scientific evidence. In this study, the appropriate ratio of heavy cargo plane suitable for the Korea's national power was calculated using principal component analysis and cluster analysis. In addition, an optimization model was established to maximize air transport capability considering realistic constraints. Finally we analyze the results of optimization model and compare two alternatives for force structure.
        4,500원
        3.
        2023.11 구독 인증기관 무료, 개인회원 유료
        In contemporary global warfare, the significance and imperative of air transportation have been steadily growing. Nevertheless, the Korean Air Force currently operates only with small and medium-sized military cargo planes, lacking larger aircraft. Consequently, the efficiency of their operations is constrained by the limited air transport capacity and the aging of their existing fleet, among other factors. Therefore, we have to consider to make future air transportation capability. Although the 2nd large-sized cargo-plane acquisition project is ongoing, its quantity is very small. In this study, we propose an optimal prediction model that takes into account practical constraints such as parking space availability, pilot availability, wartime daily maximum loads, while simultaneously maximizing both the effectiveness and efficiency of transport capacity for future warfare envirionment.
        4,000원
        4.
        2023.11 구독 인증기관 무료, 개인회원 유료
        Amphibious operations represent a pivotal military maneuver involving the transfer of landing forces via ships, boats, and aircraft from sea to land. The success of such operations can be the decisive factor in the outcome of a war. Nevertheless, planning an amphibious assault is an intricate and formidable task, demanding careful consideration of numerous variables. This complexity is particularly evident in the formulation of loading plans for troops and equipment onto naval vessels. Historical accounts underscore the profound repercussions of errors in planning and loading on the execution of these operations. In pursuit of efficient loading procedures characterized by precision and time-effectiveness, our study has delved into the realm of optimization modeling. Employing a mixed-integer mathematical programming approach, this optimization model offers a valuable tool to streamline and enhance the preparatory phase of amphibious operations.
        3,000원
        6.
        2023.11 구독 인증기관 무료, 개인회원 유료
        During wartime, the operation of engineering equipment plays a pivotal role in bolstering the combat prowess of military units. To fully harness this combat potential, it is imperative to provide efficient support precisely when and where it is needed most. While previous research has predominantly focused on optimizing equipment combinations to expedite individual mission performance, our model considers routing challenges encompassing multiple missions and temporal constraints. We implement a comprehensive analysis of potential wartime missions and developed a routing model for the operation of engineering equipment that takes into account multiple missions and their respective time windows. Our approach centered on two primary objectives: maximizing overall capability and minimizing mission duration, all while adhering to a diverse set of constraints, including mission requirements, equipment availability, geographical locations, and time constraints.
        4,000원
        15.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The ROK Army must detect the enemy’s location and the type of artillery weapon to respond effectively at wartime. This paper proposes a radar positioning model by applying a scenario-based robust optimization method i.e., binary integer programming. The model consists of the different types of radar, its available quantity and specification. Input data is a combination of target, weapon types and enemy position in enemy’s attack scenarios. In this scenario, as the components increase by one unit, the total number increases exponentially, making it difficult to use all scenarios. Therefore, we use partial scenarios to see if they produce results similar to those of the total scenario, and then apply them to case studies. The goal of this model is to deploy an artillery locating radar that maximizes the detection probability at a given candidate site, based on the probability of all possible attack scenarios at an expected enemy artillery position. The results of various experiments including real case study show the appropriateness and practicality of our proposed model. In addition, the validity of the model is reviewed by comparing the case study results with the detection rate of the currently available radar deployment positions of Corps. We are looking forward to enhance Korea Artillery force combat capability through our research.
        4,300원
        16.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, we introduce a pilot's scheduling model which is able to maintain and balance their capabilities for each relevant skill level in military helicopter squadron. Flight scheduler has to consider many factors related pilot's flight information and spends a lot of times and efforts for flight planning without scientific process depending on his/her own capability and experience. This model reflected overall characteristics that include pilot's progression by basis monthly and cumulative flight hours, operational recent flight data and quickly find out a pinpoint areas of concern with respect to their mission subjects etc. There also include essential several constraints, such as personnel qualifications, and Army helicopter training policy’s constraints such as regulations and guidelines. We presented binary Integer Programming (IP) mathematical formulation for optimization and demonstrated its effectiveness by comparisons of real schedule versus model's solution to several cases experimental scenarios and greedy random simulation model. The model made the schedule in less than 30 minutes, including the data preprocessing process, and the results of the allocation were more equal than the actual one. This makes it possible to reduce the workload of the scheduler and effectively manages the pilot's skills. We expect to set up and improve better flight planning and combat readiness in Korea Army aviation.
        4,200원
        17.
        2018.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        It is very crucial activities that Korean army have to detect and recognize enemy’s locations and types of weapon of their artillery firstly for effective operation of friendly force’s artillery weapons during wartime. For these activities, one of the most critical artillery weapon systems is the anti-artillery radar (hereafter; radars) for immediate counter-fire operations against the target. So, in early wartime these radar’s roles are very important for minimizing friendly force’s damage because arbiters have to recognize a several enemy’s artillery positions quickly and then to take an action right away. Up to date, Republic of Korea Army for tactical artillery operations only depends on individual commander’s intuition and capability. Therefore, we propose these radars allocation model based on integer programming that combines ArcGIS (Geographic Information System) analysis data and each radar’s performances which include allowable specific ranges of altitude, azimuth (FOV; field of view) and distances for target detection, and weapons types i.e., rocket, mortars and cannon ammo etc. And we demonstrate the effectiveness of their allocation’s solution of available various types of radar asset through several experimental scenarios. The proposed model can be ensured the optimal detection coverage, the enhancement of artillery radar’s operations and assisting a quick decision for commander finally.
        4,000원
        18.
        2017.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Artillery fire power due to effectiveness which is hard to predict well-planned and surprising attack can give a fear and shock to the personnel and is a very core weapon system and takes a critical role in wartime. Therefore in order to maximize operational effectiveness, Army required protecting artillery and takes a quick attack action through rapid construction of artillery’s positions. The artillery use artillery’s position to prevent exposure by moving to other position frequently. They have to move and construct at new artillery’s positions quickly against exposing existed place by foe’s recognition. These positions should be built by not manpower but engineering construction equipment. Because artillery positions have to protect human and artillery equipment well and build quickly. Military engineering battalion have lots of construction equipment which include excavator, loader, dozer, combat multi-purposed excavator, armored combat earthmover dump truck and so on. So they have to decide to optimal number of Team combining these equipments and determine construction sequence of artillery’s position in operational plan. In this research, we propose to decide number of Team efficiently and allocate required construction’s positions for each Team under constraints of limited equipments and time. To do so, we develop efficient heuristic method which can give near optimal solution and be applied to various situation including commander’s intention, artillery position’s priority or grouping etc. This heuristic can support quick and flexible construction plan of artillery positions not only for using various composition’s equipment to organize Teams but also for changing quantity of positions.
        4,200원
        1 2