검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study identifies the possibility of alignment discrepancies during mortar firing when using inactive fuzes, which make it impossible to visually observe impact points. To address this issue, we studied a quality assurance method for Sight Alignment after firing. To establish a baseline, we analyzed the pre-firing Sight Alignment and the impact group status during firing for 00 mortars and 000 shells. Based on this analysis, we derived the alignment position information range after firing for 36 mortars, distinguishing between 68% and 95% confidence interval. Finally, considering data characteristics, inspection time requirements, and non-conforming data, we selected the Sight Alignment range after firing based on the 95% confidence interval. This study is expected to contribute to the development of quality assurance methods for munitions by serving as an example of quality assurance in the mass production stage of mortars.
        4,000원
        2.
        2018.01 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, we tried to prepare an isotropic spinnable pitch which can be useful to prepare the general purpose carbon fiber through the co-carbonization of biomass tar with ethylene bottom oil under two different preparation methods (atmospheric distillation, pressurized distillation). The results showed that the ethylene bottom oil added co-carbonization was very effective to decrease of the oxygen contents for obtaining a stable spinnable pitch. The pressurized distillation was more effective to reduce the oxygen functional groups of pitches than atmospheric distillation. The obtained spinnable pitch by the pressurized distillation showed higher pitch yield of 42% and lower oxygen content of 9.12% than the spinnable pitch by the atmospheric distillation. The carbon fiber derived from the pressurized distillation spinnable pitch by carbonization at 800ºC for 5 min showed that the higher tensile strength of carbon fiber was increased up to 800 MPa.
        4,000원
        3.
        2016.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Spinnable pitches and carbon fibers were successfully prepared from petroleum or coal pyrolysis residues. After pyrolysis fuel oil (PFO), slurry oil, and coal tar were simply filtered to eliminate the solid impurities, the characteristics of the raw materials were evaluated by elemental analysis, 13C nuclear magnetic resonance spectrometer, matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS), and so on. Spinnable pitches were prepared for melt-spinning carbon fiber through a simple distillation under strong nitrogen flow, and further vacuum distillation to obtain a high softening point. Carbon fibers were produced from the above pitches by single-hole melt spinning and additional heat treatment, for oxidization and carbonization. Even though spinnable pitches and carbon fibers were processed under the same conditions, the melt-spinning and properties of the carbon fiber were different depending on the raw materials. A fine carbon fiber could not be prepared from slurry oil, and the different diameter carbon fibers were produced from the PFO and coal tar pitch. These results seem to be closely correlated with the initial characteristics of the raw materials, under this simple processing condition.
        4,000원
        4.
        2008.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Understanding the exact structure and surface characteristics of carbon materials is very important for design, synthesis, and utilization of the best carbon form with particular functions and high performance for practical applications such as selective adsorption adsorbents, energy storage materials, catalysts or catalyst supports, etc. This review paper focuses on carbon surface properties and the interaction between gaseous or liquid substances and carbon surface. Catalytic functions of carbon materials are reviewed including recent progress in synthesis and applications of nano-carbons.
        4,600원
        5.
        2007.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Carbon nanofiber (CNF) grown catalytically was chemically activated with KOH to attain structural change of CNF. The structural changes of CNF through KOH activation were investigated by using BET and SEM. From the results of BET, it was found that KOH activation was effective to develop particular sizes of pores on the CNF surface, increasing the surface area of CNF. Activated CNF was applied as an anode catalyst support of fuel cell. The effects of different activation conditions including the activation temperature and the activation time on the specific surface area of the CNF activated with KOH were investigated to obtain appropriate structure as a catalyst support. The 60 wt% Pt-Ru catalyst prepared was observed by using TEM and XRD.
        4,000원